My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in SSSAJ

  1. Vol. 62 No. 4, p. 916-922
     
    Received: Aug 15, 1997
    Published: July, 1998


    * Corresponding author(s): mmorra@uidaho.edu
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2136/sssaj1998.03615995006200040010x

Sorption and Redox Activity of Cobalt Corrinoids on Hectorite

  1. K. E. Kliewer and
  2. Matthew J. Morra 
  1. Soil Science Division, Univ. of Idaho, Moscow, ID 83844-2339

Abstract

Abstract

Halogenated synthetic organic compounds are widespread contaminants of the environment; however, little is known concerning their potential dehalogenation by extracellular corrinoids. Our primary objective was to determine if corrinoids sorbed to soil colloids are redox active and thus viable electron transfer mediators of contaminant dehalogenation in reduced soils and sediments. Dicyanocobínamide, cyanocobalamin (vitamin B12), and aquocobalamin were sorbed onto Ca2+-, K+-, and Na+-hectorite and sorption isotherms determined. Additional assessment of sorption reactions was performed using x-ray diffraction (XRD) and infrared (IR) spectroscopy. Redox states of the sorbed corrinoids in hectorite suspensions were monitored using ultraviolet and visible (UV-VIS) spectrophotometry. Corrinoid molecular size and charge, as well as the saturating cation, controlled corrinoid sorption. The XRD results indicated that Co corrinoids intercalated hectorite, expanding the basal spacing from 1.45 to 2.21 nm for Ca2+-, 1.17 to 2.70 nm for K+-, and 1.31 to 2.81 nm for Na+-hectorite. The IR spectra of bound corrinoids yielded little information on binding mechanisms, but indicated that axial ligands remained intact. The central metal of bound corrinoids was reduced to Co(I) by Ti(III) and reoxidized to Co(III) by introduction of O2, thus demonstrating that redox activity of sorbed corrinoids was maintained and reversible. Microbially produced extracellular corrinoids may act as potential electron transfer mediators when in association with clays, possibly participating in the reductive dehalogenation of organic contaminants.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © . Soil Science Society of America