My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 38 No. 4, p. 1757-1765
     
    Received: Aug 8, 2008
    Published: July, 2009


    * Corresponding author(s): dani.xu@usask.ca
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2008.0357

Land Use and Riparian Effects on Prairie Wetland Sediment Properties and Herbicide Sorption Coefficients

  1. Dani Xu *a,
  2. Sheila Meyerb,
  3. Jeanette Gaultierb,
  4. Annemieke Farenhorstb and
  5. Dan Pennocka
  1. a Dep. of Soil Science, Univ. of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
    b Dep. of Soil Science, Univ. of Manitoba, Winnipeg, MB, Canada, R3T 2N2

Abstract

Sorption of commonly used herbicides by wetland sediment can provide important information for herbicide fate modeling. The influence of sediment properties on herbicide sorption as a result of different land uses in the wetland catchment is unclear. We examined the effects of land use on the physiochemical properties of wetland sediments and the associations between these sediment properties and herbicide sorption characteristics. Bottom sediments were sampled in 0- to 5- and 5- to 10-cm sections from 17 wetlands under five different land use classes: (i) ephemeral wetlands with no riparian vegetation in a cultivated catchment (ECNR), (ii) ephemeral wetlands with riparian vegetation in a cultivated catchment (ECR), (iii) ephemeral wetlands in a grassland catchment established 4 yr ago (E4G), (iv) ephemeral wetlands in a brome grass catchment established 20 yr ago (E20G), and (v) semi-permanent (SP) wetlands in a multiple–land-use catchment. Sediments were analyzed for total organic carbon (TOC), total inorganic carbon (TIC), pH, electrical conductivity, exchangeable cations (EXCAT), total cation exchangeable capacity (CEC), and percent clay (%clay). Sediment herbicide sorption partition coefficient (Kd) was measured for trifluralin, atrazine, 2,4-D, and glyphosate. The sorption of the herbicides in the sediment increased in the order of 2,4-D < atrazine < glyphosate < trifluralin. The sorption of 2,4-D, atrazine, and trifluralin was positively correlated to TOC, EXCAT, and CEC but negatively correlated to %clay. Glyphosate sorption was negatively correlated to pH, TIC, EXCAT, and %clay. Overall, wetland sediments that were recently cultivated (ECNR and E4G) had lower TOC, TIC, EC, EXCAT, CEC, and Kd values (2,4-D, trifluralin, and atrazine) than sediments that had not been recently cultivated (ECR, E20G, and SP). The ECR wetland sediments had the largest Kd for all four herbicides, suggesting that land use and riparian vegetation have a significant impact on herbicide sorption.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2009. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyAmerican Society of Agronomy, Crop Science Society of America, and Soil Science Society of America