My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 38 No. 2, p. 426-436
     
    Received: June 19, 2008
    Published: Mar, 2009


    * Corresponding author(s): shrestha.10@osu.edu
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2008.0283

Greenhouse Gas Emissions and Global Warming Potential of Reclaimed Forest and Grassland Soils

  1. Raj K. Shrestha *a,
  2. Rattan Lala and
  3. Chris Penroseb
  1. a School of Environment and Natural Resources, The Ohio State Univ., Columbus, OH 43210
    b Professor and Extension Educator, Agriculture, and Natural Resources and 4-H Youth Development, The Ohio State Univ., Columbus, OH 43210

Abstract

Although greenhouse gas (GHG) emissions from soils are important, reclaimed mine soil (RMS) ecosystems are not widely assessed. Postreclamation land uses (forest, hay, and pasture) were investigated to: (i) monitor the magnitude of GHG fluxes, (ii) estimate their global warming potential (GWP), (iii) identify the relationship between GHG fluxes and soil properties, and (iv) develop a soil quality index by principal component analysis (PCA). The GHG fluxes were measured for 1 yr cycle and simultaneous measurements were also made for soil moisture and temperature. The RMS-forest, -hay, and -pasture land uses had weighted average fluxes of 1.16, 1.66, and 3.06 g CO2–C m−2 d−1; 0.33, 0.48 and 1.1 mg CH4–C m−2 d−1; and 0.33, 0.70, and 1.06 mg N2O-N m−2 d−1, respectively. The CO2, CH4, and N2O fluxes were consistently high in the RMS-pasture and low in the RMS-forest. The GWP (CO2–C equivalent) of the postreclamation land uses was in the order of RMS-forest (4.5 Mg ha−1 yr−1) = RMS-hay (6.8 Mg ha−1 yr−1) < RMS-pasture (12.3 Mg ha−1 yr−1). The PCA showed that four PCs with eigenvalues > 1 explained 88.8% of the total variance in the soil properties. The first PC is mostly characterized by soil physical properties and the second by chemical properties. Soil and air temperatures were positively correlated with CO2, CH4, and N2O fluxes. The results suggest that GWP from RMS can be minimized by establishing forest land use.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2009. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyAmerican Society of Agronomy, Crop Science Society of America, and Soil Science Society of America