My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 37 No. 3, p. 1051-1063
     
    Received: Dec 27, 2006
    Published: May, 2008


    * Corresponding author(s): lhfisher@usgs.gov
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2006.0561

Water Movement within the Unsaturated Zone in Four Agricultural Areas of the United States

  1. Lawrence H. Fisher *a and
  2. Richard W. Healyb
  1. a USGS, 160 N. Stephanie Street, Henderson, Nevada, 89074
    b USGS, MS 413, Box 25046, Denver Federal Center, Denver, Colorado, 80225. Use of trade, product, or firm names herein does not imply endorsement by the U.S. Government

Abstract

Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2008. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyAmerican Society of Agronomy, Crop Science Society of America, and Soil Science Society of America