My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 33 No. 3, p. 911-919
     
    Received: Mar 11, 2003
    Published: May, 2004


    * Corresponding author(s): hill@yorku.ca
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2004.0911

Denitrification Potential in Relation to Lithology in Five Headwater Riparian Zones

  1. Alan R. Hill *,
  2. Philippe G. F. Vidon and
  3. Jackson Langat
  1. Department of Geography, York University, Toronto, ON, Canada M3J 1P3

Abstract

The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field–riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000–2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2004. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA