My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 32 No. 6, p. 2301-2310
     
    Received: Sept 7, 2002
    Published: Nov, 2003


    * Corresponding author(s): jlangl2@po-box.mcgill.ca
 View
 Download
 Alerts
 Permissions

doi:10.2134/jeq2003.2301

Intra-Storm Study of Solute Chemical Composition of Overland Flow Water in Two Agricultural Fields

  1. Jacques L. Langlois * and
  2. Guy R. Mehuys
  1. Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9

Abstract

Few studies have assessed the transport of dissolved nutrients at the field scale under natural rainfall conditions. Hysteresis between dissolved nutrients and discharge behavior can complicate such assessments and this effect has only been examined qualitatively. In this study, we investigated factors contributing to short-term variations of dissolved cation (Ca, Mg, Na, and K) and anion (soluble reactive phosphorus [SRP], NO3, and SO4) concentrations in runoff water and developed a quantitative method to study their hysteretic behavior. Within-storm variations of dissolved nutrient concentrations were determined in two agricultural fields during four natural rainfall events along with discharge, sediment, antecedent soil water conditions, and nutrient contents. For each event, nutrient loads were plotted against discharge during the rising and falling limb of the runoff hydrograph. The resulting hysteresis curves were characterized by an index H, which is the ratio between the integrated areas under the rising and falling curves of the hydrograph. Results showed that nutrient concentrations increased with time during each event. Counterclockwise (H < 1) hysteresis, occurring when the falling limb had larger loads, was found when soils were initially dry whereas clockwise hysteresis (H > 1) was associated with prior wet soil conditions. Two hypotheses are suggested to explain these variations. First, suspended sediments could have acted as a sink for dissolved nutrients and the sensitivity of nutrients to hydrological conditions was determined by their preferential sorption on these sediments. Second, movement of nutrients into runoff occurred more readily as soils became wetter during an event.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2003. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA

Facebook   Twitter