My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 32 No. 6, p. 2122-2131
     
    Received: Feb 11, 2003
    Published: Nov, 2003


    * Corresponding author(s): erich@maine.edu
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2003.2122

Influence of Organic Matter Decomposition on Soluble Carbon and Its Copper-Binding Capacity

  1. Karen A. Merritt and
  2. M. Susan Erich *
  1. Department of Plant, Soil, and Environmental Sciences, University of Maine, Orono, ME 04469

Abstract

Bulk and low molecular weight (LMW) (<1 kDa) water-extractable carbon were collected from fresh and microbially degraded wheat straw (Triticum aestivum L.) and crimson clover (Trifolium incarnatum L.) residues to monitor early-stage humification over an 8-wk incubation. Copper complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A 285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g−1 C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2003. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyASA, CSSA, SSSA