My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in JEQ

  1. Vol. 32 No. 4, p. 1250-1257
     
    Received: Sept 24, 2002
    Published: July, 2003


    * Corresponding author(s): jeaa@geus.dk
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2134/jeq2003.1250

Mineralization of Soil-Aged Isoproturon and Isoproturon Metabolites by Sphingomonas sp. Strain SRS2

  1. Helle Johannesen,
  2. Sebastian R. Sørensen and
  3. Jens Aamand *
  1. Geological Survey of Denmark and Greenland (GEUS), Dep. of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen, Denmark

Abstract

The aim of the study was to determine the effect of aging of the herbicide isoproturon and its metabolites monodesmethyl-isoproturon and 4-isopropyl-aniline in agricultural soil on their availability to the degrading bacterium Sphingomonas sp. strain SRS2. The 14C-ring-labeled isoproturon, monodesmethyl-isoproturon, and 4-isopropyl-aniline were added to sterilized soil and stored for 1, 49, 71, or 131 d before inoculation with strain SRS2. The availability of the compounds was estimated from the initial mineralization and the amount of 14CO2 recovered after 120 d of incubation. Aging in soil for 131 d reduced the initial mineralization of isoproturon and monodesmethyl-isoproturon and, in the case of isoproturon, also reduced the recovery of 14CO2 Initial mineralization and recovery of 14CO2 from aged 4-isopropyl-aniline were slightly reduced, but less 14CO2 was generally produced than with isoproturon or monodesmethyl-isoproturon. Thus, recovery of 14CO2 from 14C-isoproturon and 14C-monodesmethyl-isoproturon was 50.7 to 64.4% of the initially added 14C, while recovery from 14C-4-isopropyl-aniline was only 11.7 to 17.0%. Sorption measurements revealed similar Freundlich constants (K f) for isoproturon and monodesmethyl-isoproturon, whereas K f for 4-isopropyl-aniline was more than fivefold greater. The findings imply that in soil, partial degradation of isoproturon to 4-isopropyl-aniline may lead to reduced mineralization of the herbicide due to sorption of the aniline moiety.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2003. American Society of Agronomy, Crop Science Society of America, Soil Science SocietyPublished in J. Environ. Qual.32:1250–1257.