My Account: Log In | Join | Renew
Search
Author
Title
Vol.
Issue
Year
1st Page

Abstract

 

This article in CS

  1. Vol. 47 No. 2, p. 582-588
     
    Received: May 28, 2006
    Published: Mar, 2007


    * Corresponding author(s): wangjk@caas.net.cn
    j.k.wang@cgiar.org
 View
 Download
 Alerts
 Permissions
 Share

doi:10.2135/cropsci2006.05.0341

Application of Population Genetic Theory and Simulation Models to Efficiently Pyramid Multiple Genes via Marker-Assisted Selection

  1. Jiankang Wang *ad,
  2. Scott C. Chapmanb,
  3. David G. Bonnettc,
  4. Greg J. Rebetzkec and
  5. Jonathan Croucha
  1. a Crop Research Informatics Lab., and Genetic Resources Enhancement Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico
    d Institute of Crop Science, and The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    b CSIRO Plant Industry, 306 Carmody Rd, St. Lucia, QLD 4067, Australia
    c CSIRO Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia

Abstract

Breeders face many complex choices in the design of efficient crossing and selection strategies aimed at combining desired alleles into a single target genotype. Both population genetic theory and a breeding simulation tool were used to study the effects of different strategies on population size and number of marker assays required to recover a target genotype in wheat (Triticum aestivum L.). Enriching the frequency of desirable alleles in the F2 of single-cross and in the F1 of backcross and topcross populations greatly reduced the minimum required population size, but the gain from another enrichment selection is minor. General equations were developed to determine appropriate crossing strategies, and sequential culling was proposed to minimize total marker screening costs. For a topcross of three adapted lines from an existing breeding program, simulation of changes in allele frequencies at nine target genes (seven unlinked) showed that population size was minimized with a three-stage selection strategy in the F1 generation of the topcross (TCF1), the F2 generation of the topcross (TCF2), and doubled haploid lines (DHs). Enrichment of allelic frequencies in TCF2 reduced the total number of lines screened from >3500 to <600. Eight of the genes were present at frequencies >0.97 after selection, while the tin reduced-tillering allele was only at 0.77 in the final selected population due to its strong repulsion-phase linkage to the grain quality gene Glu-A3 in this cross and the incomplete linkage of the tin marker. Therefore, the presence of the tin gene needs to be further confirmed by other methods.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2007. Crop Science Society of AmericaCrop Science Society of America