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Fig. 2.1 

 
 
Fig. 2.1.  This boxplot is the R equivalent of Fig. 5 in Chapter 2.  The R version 
identifies three observations as being potential outliers, but Fig. 5 in Chapter 2 did 
not.  This discrepancy is due to SAS and R using different algorithms for 
determining quantiles, which can result in sizable differences for the interquartile 
range and outlier fence, especially in small samples such as these (use the R help 
for the quantile() function for more information on the nine options for 
quantiles). 
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Fig. 2.2 

 
 
Fig. 2.2.  These are the diagnostic plots for the ANOVA of the Statbean Study pH 
data from the Central Location.  This panel is comparable to the top section of Fig. 
6 in Chapter 2.  Both show there are only minor deviations from normality and no 
evidence of systematic departures from the model.  The R packages used to make 
these graphs do not provide a method to overlay a straight line on the Q-Q plot 
(lower left).  Also, SAS uses the lower right section to print a table with four 
statistics describing the distribution of the residuals and four fit statistics.  
Because the R’s summary() function gave the five-number summary for the 
residuals and we are not comparing models, I found it easier and more 
informative to put a box and whisker plot in this position. 
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Fig. 2.3 
 

 
 
Fig. 2.3.  These bar charts of the calcium treatment means for soil pH and Ca with 
LSD error bars (averaged over the mulch levels so n=6) at the Central Location 
correspond well with Fig. 7 in Chapter 2.  Observe the pH chart above and the one 
in Chapter 2 move the baseline to pH=4 to emphasize the differences among 
treatments.  In both graphs above, the LSD error bars are centered so half the LSD 
is above the mean and half below.  Thus, if these error bars overlap, the 
treatments are not significantly different at the 5% level (Ca LSD = 400 mg/kg, pH 
LSD = 0.318). 
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Fig. 2.4. 
 
 

 
 
Fig. 2.4.  These are the diagnostic plots for the ANOVA of the Statbean Study pH 
data from the East Location.  This panel is comparable to the middle section of 
Fig. 6 in Chapter 2.  Both show there are only minor deviations from normality 
and no evidence of systematic departures from the model.  The structural 
differences between these R graphs and those in the SAS panel are discussed in 
the caption for Fig. 2.2. 
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Fig. 2.5. 

 
 
 
Fig. 2.5.  These are the diagnostic plots for the ANOVA of the Statbean Study pH 
data from the West Location.  This panel is comparable to the bottom section of 
Fig. 6 in Chapter 2.  Both show there are only minor deviations from normality 
and no evidence of systematic departures from the model.  One potential outlier 
shows on the box and whisker plot, but the scaled residuals place at about -2 on a 
standardized scale so it is not likely an outlier (see R output text).  The structural 
differences between these R graphs and those in the SAS panel are discussed in 
the caption for Fig. 2.2. 
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Fig. 2.6 

 
 
Fig. 2.6.  These are the diagnostic plots for the ANOVA of the Statbean Study pH 
data combined over all three locations.  This panel is comparable to Fig. 8 in 
Chapter 2.  Both show there are only minor deviations from normality and no 
evidence of systematic departures from the model.  Four potential outliers show 
on the box and whisker plot, but the minimum and maximum scaled residuals 
were about -2 and +1.8 on a standardized scale so it is unlikely that these are 
outliers (see R Output 2.4).  The structural differences between these R graphs 
and those in the SAS panel are discussed in the caption for Fig. 2.2. 
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Fig. 2.7 
 

 
 
Fig. 2.7.  These bar graphs plot the soil pH and Ca means for the Loc-by-Ca_Trt 
combinations with error bars equal to the LSD (n=6 per bar).  They are the 
equivalent of Fig. 9 in Chapter 2.  The LSD error bars are centered so half the LSD 
is above the mean and half below.  Thus, if these error bars overlap, the 
treatments are not significantly different at the 5% level (pH LSD = 0.236; Ca LSD = 
341).   
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Fig. 3.1 
 

 
 
Fig. 3.1.  Within block mean squares for 23 block arrangements of row and 

columns.  This figure compares well with the figure in Box 3 of Chapter 3.  Both 

show the minimum variation within blocks occurs with one row per block and two 

columns per block and that one row per block with three or six columns per block 

are viable alternatives. 
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Fig. 4.1 
 
 

 
 
Fig. 4.1.  This graph emulates Fig. 3 in Chapter 4 and shows the relationship 
between power and replications (complete blocks per site) for a range of number 
of locations (sites) in the study. 
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Figure 6.1  Scatter plot of data from Chapter 6, Example 1, eel.dat with 

marginal box plots. 
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Figure 6.2.  Resduals plots from simple linear regression of eel wieight on 

length for Chapter 6, Example 1.    
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Fig. 6. 3a.  Frequency histogram of residuals from model weight ~ length 

for eel data from Chapter 6, Example 1.   
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Figure 6.3b.  Frequency histogram of standardized (also known as student) 

residuals from linear model weight ~ length for the eel data from Chapter 6, 

Ex. 1.
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Figure 6.3c.  Frequency histogram of Eel weights for Chapter 6, Example 1. 
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Figure 6. 4. Several diagnostic plots for regression of weight on length for 

eel data from Chapter 6, Example 1.  The residuals do not exhibit a pattern 

but there are a few outliers.  
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Figure 6.5.  Additional diagnostic plots for linear regression of weight ~ 

length for Eel data from Chapter 6, Example 1.  These plots include a 

residuals boxplot and several measures of influence.  
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Fig 

Figure 6.6  Additional influence plots for regression of weight ~ length for 

eel data from Chapter 6, Example 1. 
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Figure 6.7.  Plot of eel weight on length with confidence and prediction 

intervals for Chapter 6, Example 1. 
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Figure 6.8.  Plot of prediction ellipse for regression of weight on length for 

eel data in Chapter 6, Example 1.  
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Figure. 6.9.  The QQ plot for the regression of weight on length for the eel 

data from Chapter 6, Example 1.   Some outliers are evident at extremes of 

plot. 
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Figure 6.10.  Diagnostic plots from simple linear regression for fibre 

content on day for Chapter 6, Example 3.   
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Figure 6.11.  Confidence and predication interval plot for the mean of 

content regressed on day for the fibre data from Chapter 6, Example 3.  
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Figure 6.12.  Correlations among variables in the grass dataset where the 

plot yields are regressed on counts of windgrass.  Several variables were 

calculated from the initial count and yield data.  Plots of the relationships 

among the variables are on the lower diagonal and the pearson correlation 

coefficients are above the diagonal.  The data are from Chapter 6, Example 

4. 
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Figure 6.13.  Diagnostic plots from linear regression of the plot yield on the 

square root of the windgrass counts for the grass data from Chapter 6, 

Example 4.  The regression model is not an adequate fit to the data. 
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Figure 6.14.  Diagnostic plots from regression of the log-transformed plot 

yield on the windgrass counts for the grass data in Chapter 6, Example 4.  

These data illustrate that this model is not an adequate fit to the data.  
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Figure 6.15.  Plots of the various regressioin models that have been tested 

for the relationship between the plot yield and the windgrass counts in 

Chapter 6, Example 4.  All of the plots illustrate some departure from the 

fitted values and the measured values.  The plot in the upper left of the 

regression of yield on the square root of the windgrass counts has the best 

match of data to the fitted values but there are still problems.   
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Figure 6.16.  Plot of studentized residuals against fitted values for the 

nonlinear regression of plot yield on windgrass counts, using the formula:  

Yield  ~ (a*exp(b*wgrass)), where a= 8000, and b = -0.01) for the grass 

data in Chapter 6, Example 4. 
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Figure 6.17.  Comparison of two nonlinear regressions, both with the same 

formula, Yield  ~ (a*exp(b*wgrass)).  The red line in the fit when  a= 8000, 

and b = -0.01 and the green line is the fit when a = 7000, b = -0.01, and c = 

1200.  The second model (green line) seems to be a better fit.  These data 

are from the grass data in Chapter 6, Example 4.   

 

 

 

 

  



 

R scripts  pg. 30 

Figure 6.18.  Plot of fit to data for the nonlinear regression for yield on 

windgrass counts where the formula was Yield  ~ (a*exp(b*wgrass)) where 

a = 7000, b = -0.01, and c = 1200.  The 95% confidence intervals and 

included and illustrate variance heterogeneity as windgrass counts increase. 
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Figure 6.19.  Scatter plot of potato weight by size with box plots of the data 

for the potato dataset in Chapter 6, Example 6.  The data are skewed and 

variance heterogeneity is present.   
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Figure 6.20.  Diagnostic plots for the best regression model for the potato 

data in Chapter 6, Example 6.  The best model regressed potato weight on 

the size3 variable and did not include an intercept.  Even though this model 

was the best based on all of the models tested, the residuals still show some 

inadequacy in the model, specifically for variance heterogeneity.   
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Figure 6.21.  The histogram for the residuals and the QQ plot for the 

untransformed weight data in the potato data set from Chapter 6, Example 

6.  These plots illustrate the skewed nature of the data.   
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Figures 6.22 (left) and 6.23 (right).  The plots from box cox transformations 

of the size data.  Plot 6.22 is the box cox results when weight is regressed 

on log(size) while 6.23 is the box cox results when weight is regressed on 

size.  These data are from Chapter 6, Example 6.  
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Figure 6.24.  Residuals histograms and box plots for the original weights 

and the box cox transformed weights with lambda = 0.34.  The 

transformation does help to normalize the data and remove some variance 

heterogeneity.  These data are from the potato dataset in Chapter 6, 

Example 6.   
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Figure 6.25.  The final box cox transformation plot showing that 0.34 has 

the highest log likelihood.  The transformation is for the weight data in the 

potato dataset from Chapter 6, Example 6.   
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Fig. 6.26.  Diagnostic plots from the regression model for the box cox 

transformed potato weight on size.  These plots look better but there are still 

some problems with the fit of the model.  These data are from Chapter 6, 

Example 6.   
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Fig. 6.27a and b.  Residuals plots comparing the regression of weight on size, with 

individual weights (a) with the regression of weight on size 3 with no weighting (b) .  

The variance heterogeneity is not as great when the weighted analysis is run.  These 

data are from the potato dataset in Chapter 6, Example 6.  
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Fig. 6.28 a and b.  The residuals plots for the two models are similar but not 

identical.  These data are from Chapter 6, Example 6.   
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Fig. 6.29.  The observed data and separate regression lines with 95% 

confidence and prediction intervals for the apple data in Example 7 of 

Chapter 6, which reconstructs Fig. 14 in that chapter.  
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Fig. 6.30a 

 
 

Fig. 6.30a.  The observed data and common regression line with 95% 

confidence and prediction intervals for the apple data in Example 7 of 

Chapter 6, which reconstructs the upper graph for Approach a in Fig. 15 in 

that chapter.  
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Fig. 6.30a 

 
 

Fig. 6.30a.  The observed data and combined analysis regression lines with 

95% confidence intervals for the apple data in Example 7 of Chapter 6.  

This graph reconstructs the lower left graph for Approach c (equal 

variances) in Fig. 15 in that chapter.  
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Fig. 6.31 

 
 

Fig. 6.31.  The internally Studentized residuals plotted against the predicted 

values for Approach c (equal variances) for the apple data in Example 7 of 

Chapter 6.  This graph reconstructs the lower right graph in Fig. 15 in that 

chapter, except that there isn't any function to calculate the externally 

Studentized (jackknifed) residuals for a gls object in R.  However, there is a 

function for the internally Studentized residuals, which should not make a 

big difference when the number of cases per group is large as it is in this 

example (30 per variety). 
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Fig. 6.32a 

 

 

Fig. 6.32a.  The observed data and combined analysis regression lines with 

95% confidence intervals for the apple data in Example 7 of Chapter 6.  

This graph reconstructs the lower left graph for Approach c (unequal 

variances) in Fig. 16 in that chapter.  
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Fig. 6.32b 

 
 

Fig. 6.32b.  The internally Studentized residuals plotted against the 

predicted values for Approach c (unequal variances) for the apple data in 

Example 7 of Chapter 6.  This graph reconstructs the lower right graph for 

in Fig. 16 in that chapter, except that the internally instead of the externally 

Studentized (jackknifed) residuals are used.  See the caption for Fig. 6.31 

for an explanation. 
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Figure 6.33 a, b, c and d.  Data from Example 8 in Chapter 6 are examined.  

In 6.33a (upper right), a residuals plot is fit to a simple linear regression of 

air temperature on year.  Confidence and prediction intervals are included.  

In 6.33b, (upper left), the residuals from the model indicate that variance is 

increasing with time.  In 6.33c (lower left), the temperature data is plotted 

against year and the student residuals are plotted against year in 6.33d.  

These also show increased variation with time.  
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Figure 6.34 a, b, c, and d. Residuals, histograms and boxplots from simple 

linear regression of the air temperature on year for the airtemp dataset in 

Chapter 6, Example 8.  The residuals are in plots 6.34a and 6.34c (left side) 

and the studentized residuals are in 6.34b and 6.34d.    
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Fig. 6.35a, b, and c.  Plots of temperature against year for two 

autoregressive models, with prediction intervals, (AR1 (a) and AR4 (b).  In 

both cases, some of the data points fall outside of the intervals. These plots 

match Figures 18 and 17 in Chapter 6.  Plot 6.35c is the raw data with the 

predicted values for the nonlinear regression model marked in red. These 

data are from the airtemp dataset in Chapter 6, Example 8.   
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Fig. 6.36 a, b, c, and d.  Moving average plots of air temperature against 

year for 1(a), 4(b), 6(c) and 8(d) years.  The trend towards more variation 

and greater temperatures after 1985 is illustrated.  These data are from the 

air temp dataset in Chapter 6, Example 8. 
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Figure 6.37 a and b.  The autocorrelation function (ACF)(a) and the partial 

autocorrelation function (PACF) (b) plots for the studentized residuals from 

the simple linear model of air temperature on year indicates that it the 

autocorrelation alternates sign and the first 4 lags are the largest. 
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Fig. 6.38.  A plot of the MSE against breakpoint year for the airtemp data.  

The minimum MSE occurred when the breakpoint was 1979.  These data 

are from Chapter 6, Example 8.   
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Fig. 6.39 

 

 
Figure 6.39.  A graph of the two line segments identified in the piecewise 

regression of air temperature on year for the airtemp dataset from Chapter 6, 

Example 8.  The first line (blue) lasts through 1978 and the second (red) 

from 1979 to the present. The equation for the blue line is temp = 8.59; and 

for the red line, temp = 0.0349(year – 1979) + 8.59.  
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Fig. 6.40 

 

 

 

 
 

 

Fig. 6.40.  The predicted regression line with confidence and prediction 

intervals for a piecewise regression of temperature on year.  The breakpoint 

was set to 1979 after the iterative search found that breakpoint to minimize 

the MSE.  These data are from the airtemp dataset in Chapter 6, Example 8.  

This graph corresponds to Fig. 19 in that chapter and the model used forces 

the initial line segment to be horizontal and the lines to meet at the 

breakpoint, which is the same as the authors did for their figure.   
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Fig. 7.1 
 

 
 
Fig. 7.1.  Mean grain yield for Year-by-Soil combinations at two levels of N.  This 
figure does not have all the detail of Fig. 1.1 in Chapter 7, but it contains the main 
points.  It does include half the LSD above and below each mean so whether or 
not the error bars overlap agrees with the compact letter display of significance.  
The LSD calculated in R was 0.09419 compared to the 0.0983 listed in Fig. 1.1 of 
Chapter 7. 
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Fig. 7.2 

 
 
Fig. 7.2.  Mean grain yield for Year-by-Soil combinations at four levels of P.  This 
figure does not have all the detail of Fig. 1.2 in Chapter 7, but it contains the main 
points as in the graphs on Page 13 of App. 2 in Chapter 7.  Note that a quadratic 
fit was applied to all four responses instead of the best fit polynomial.  It does 
include half the LSD above and below each mean so whether or not the error bars 
overlap agrees with the compact letter display of significance.  The LSD calculated 
in R was 0.1332 compared to the 0.1359 given in Fig. 1.2 of Chapter 7. 
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Fig. 7.3 
 

 
 
Figure 7.3.  Mean grain yield for Soil-by-N combinations at four levels of P.  This 
figure does not have all the detail of Fig. 1.3 in Chapter 7, but it contains the main 
points as in the graph on Page 18 of App. 2 in Chapter 7.  Note that a cubic fit was 
applied to all four responses.  It does include half the LSD above and below each 
mean so whether or not the error bars overlap agrees with the compact letter 
display of significance.  The LSD calculated in R was 0.1332 compared to the 
0.1341 given in Fig. 1.2 of Chapter 7 
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Fig. 9.1 
 
 

 
Fig. 9.1.  This box and whisker plot does not exactly replicate Fig. 3 of Chapter 9 in 
that the boxes are narrower and the lower whisker for Trt B is shorter.  The latter 
allows the minimum value to be identified as a possible outlier.  These disparities 
are due to SAS and R using different algorithms for determining quantiles, which 
can result in sizable differences for small samples such as this (use the R help for 
the quantile() function for more information on the nine options for quantiles). 
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Fig. 9.2 
 
 

 
Fig. 9.2.  This box and whisker plot varies slightly from Fig. 4 of Ch. 9 for the same 
reason Fig. 9.1 differs from Fig. 3 of Chapter 9.  
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Fig. 9.3 
 
 

 
 
Fig. 9.3.  This figure reliably follows Fig. 6 of Chapter 9, in which the ANCOVA 
quantifies the linear response of y to x for Treatments A and B. 
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Fig. 9.4 
 

 
 
Fig. 9.4.  This figure reliably emulates Fig. 18 of Chapter 9 showing the large 
difference in slopes for Treatments A and B. 
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Fig. 14.1 
 

 
 
Fig. 14.1.  This graph combines four of the panels in Fig. 1 in Chapter 14 into one.  
Note the relatively large increase in variance for points 10 or more units apart 
suggesting the residuals are spatially correlated.  The different patterns for the 
different angles indicate the correlations are not isotropic, but the departures are 
not substantial. 
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Fig. 14.2 
 

 
 
Fig. 14.2.  This figure narrows the range of angles to show a little of the clustering 
that Fig. 2 in Chapter 14 shows; specifically, there are areas of similarity and areas 
of substantial differences in variance. 
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Fig. 14.3 
 

 
 
Fig. 14.3.  The narrow angle variograms for the residuals from the quadratic row-
column model without a spatial covariance structure show reasonable control of 
the spatial correlation, except at the outer edges. 
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Fig. 14.4 
 

 
Fig. 14.4.  The isotropic (or omnidirectional) variogram for the residuals from the 
quadratic row-column model without a spatial covariance structure also displays 
reasonable control of the spatial correlation, except at the outer edges.  These 
results are similar to those illustrated in Fig. 4 and 5 in Chapter 14. 
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Fig. 14.5 
 

 
 
Fig. 14.5.  Except for the longest distance at 80º, the quadratic row-column model 
plus an exponential spatial covariance structure showed excellent reduction in 
the observable spatial correlation; but it did not appear to be superior to the 
quadratic row-column model without a covariance structure. 
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Fig. 14.6 
 

 
 
Fig. 14.6.  The isotropic (or omnidirectional) variogram for the residuals from the 
quadratic row-column model plus a spatial covariance structure also showed a 
substantial reduction in the observable spatial correlation.  However, it was not 
visibly better than the quadratic row-column model without a covariance 
structure. 
 
 
 
 


