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Appendix A: 

Introduction

Barry Glaz

Review Questions

1.	 Alpha and Beta rejected a Ho based on results with p = 0.0498 and did not reject 
when p = 0.0501. Were these good decisions?

a.	 Yes, we live and die by 0.05.

b.	 They should have rejected the Ho in both cases.

c.	 They should have accepted the Ho in both cases.

d.	 Had they also considered the effects of a Beta error, it is extremely likely that they 
would have either rejected or accepted the Ho in both cases.

Answer: a is technically correct in that we currently live and die by 0.05, but doing 
so is killing us. The best answer is d.
2.	 Rho did not understand statistics. You should ignore a significant interaction if 
at least one main effect is significant.

a.	 True

b.	 False
Answer: b. False. The grumpy ox had this one right.
3.	 Alpha and Beta’s research on maximizing the morning snack of the oxen employees 
of Delta Oxlines should follow up with higher rates of coffee and donut. 

a.	 True 

b.	 False
Answer: a. True. Since oxcart-pulling distance increased at the highest rates of coffee 
and donut (1000 ml and 500 g, respectively), Alpha and Beta should conduct more 
research to find the rate at which the response to coffee and donut is maximized.
4.	 What is δαρν in English?

a.	 The equation of a complex mixed model.

b.	 A Type 5 error.

c.	 The ox fraternity in The Wondrous Land.

d.	 darn.
Answer: d. darn.
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Chapter 1: Errors in Statistical 
Decision Making

Kimberly Garland-Campbell

Software code

For hypothetical experiment, critical F values and beta values were calculated as below:

SAS

We created a dataset named ALPHA with two variables; the first variable is also 
named ALPHA and is a range of levels for Type 1 error from zero to 0.9999.  The second 
variable is named FVALUE and is the F value associated with the effect that we would 
like to obtain (1.5, 4, and 9.285).  The following code creates a new dataset named ERROR 
with the variables from the ALPHA dataset plus the following variables: PROB, NUMDF, 
DENDF, NONCENT, FCRIT, POWER, BETA, and AVEERROR, where PROB is the proba-
bility of alpha error, NUMDF is the numerator degrees of freedom for the effect, DENDF is 
the denominator degrees of freedom associated with the experimental error, NONCENT 
is the noncentrality parameter, FCRIT is the critical F value for tests of a significant differ-
ence in effects, POWER is the power of the test and BETA is 1-POWER or the Type 2 error 
associated with the test.  AVEERROR is the average of the alphas and the beta errors for 
the various scenarios. The resulting ERROR dataset can be exported into a spreadsheet 
using Export Wizard in the File menu, or copied from the PROC PRINT statement.  The 
ERROR dataset contains the data used in Table 1 and in Figures 1-3.  

DATA ERROR;  SET ALPHA;
PROB=(1-ALPHA);
NUMDF=7;
DENDF=14;
NCP=NUMDF*FVALUE;
FCRIT=FINV(PROB, NUMDF, DENDF,0);
POWER=1-PROBF(FCRIT,NUMDF,DENDF,NCP);
BETA=1-POWER;
AVEERROR=(ALPHA+BETA)/2;
PROC PRINT DATA=ERROR;
RUN:

In R: 
Error<-read.csv("alpha.csv")
Error$prob <- (1-(alpha))
Error$numdf<-7
Error$dendf<-14
Error<-transform(Error,ncp=(numdf*Fvalue))
Error<-transform(Error,fcrit=qf(alpha,numdf,dendf))
Error<-transform(Error,power=1-pf(fcrit,numdf,dendf,ncp))
Error<-transform(Error,beta=1-power)
Error<-transform(Error,aveterror=(alpha+beta)/2)
print(Error) 

Yates Oat Experiment:

Data are available from the 'agridat' package in R as yates.oat.csv.
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In this dataset, the x value is the columns and the y variable is the rows in the experi-
mental design.  The cultivar effect is named GEN and the manure effect is named NITRO. 
SAS code using Proc Mixed:

PROC SORT DATA=YATES;
BY GEN NITRO BLOCK;
RUN;

PROC MIXED DATA=YATES METHOD=REML COVTEST PLOTS=ALL;

*This statement identifies the dataset, requests REML analysis and full residuals 
plots. The COVTEST statement requests tests of the covariance parameters;
TITLE 'YATES OAT SPLIT PLOT ANALYSIS';

* The title statement is an identifier and can be modified as needed;
CLASS GEN NITRO BLOCK;

*The class statement identifies the nitrogen and block variables as factors rather than 
nominal variables.  In this analysis, nitrogen is considered to be a factor (categorical) 
variable, but it is conceivable that it would be a nominal (quantitative) variable in 
another type of analysis;
MODEL YIELD=GEN NITRO GEN*NITRO;

*The genotype and nitrogen treatments are fixed effects and replications are random 
so they are specified as such in the RANDOM statement;  
RANDOM BLOCK BLOCK*GEN;

* The random statement specifies the two random effects for linear trend;
PROC MIXED DATA=YATES METHOD=REML COVTEST PLOTS=ALL;
TITLE 'YATES OAT SPLIT PLOT WITH LINEAR TREND';
CLASS GEN NITRO BLOCK X;

*The X variable is added to the classification statements to detect trends along the 
columns and is also added to the fixed effects below;
MODEL YIELD=GEN NITRO GEN*NITRO X;
RANDOM BLOCK BLOCK*GEN;
LSMEANS X GEN NITRO GEN*NITRO/ E CL;
RUN;

Similar models can be tested using R as described in the documentation for 
the agridat package: (agridat.pdf.   pp. 318-319).   A few additional pieces of code 
have been added to the code included in the agridat.pdf documentation for reasons 
described below.  The code below is for the dataset available in the agridat package 
as well as for a new dataset containing the new randomization.
library(agridat)
require(lattice)
require(lme4)
require(lsmeans)
require(lucid)

#yield of oats in a split block experiment with four nitrogen levels, three oat cultivars, 
six blocks, total of 72 plots

# import data from agridat package:
data("yates.oats") 
dat<-yates.oats
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#Plots the general layout of the data yields
#Includes the experimental design in the plots with the yield data.
desplot(yield ~ x*y, data=dat, out1=block, text=gen, col=nitro, 
        cex=1, main="Yield Data for original Yates.oats Dataset")

#The plot shows that there is a linear gradient across the field. 
# Right-half of each block has lower yield. 
# Conduct split-plot analysis using lmer function in the 'lme4' package in R
#Have to note nitro as factor or the program will evaluate it with 1 df as a numerical variable
oatsp <- lmer(yield ~ factor(nitro) * gen + (1|block/gen), data=dat)

#print out all effects
summary(oatsp)

#print summary of fixed effects
anova(oatsp)

#print out fixed and random effects for model
fixef(oatsp)
ranef(oatsp)

#print out variance components for model
vc(oatsp) 

#obtain lsmeans for the main effects and print them
lsmnit <- lsmeans(oatsp, "nitro")
lsmgen <- lsmeans(oatsp, "gen")
print(lsmnit)
print(lsmgen)

#plot residuals
qqmath(ranef(oatsp))

#Rerun model with a linear effect to correct for the linear trend.
# Add a linear trend for column to the split-plot arrangement
oatsplin <- lmer(yield ~ x + factor(nitro) * gen + (1|block/gen), 
data=dat)
summary(oatsplin)
anova(oatsplin)
fixef(oatsplin)
ranef(oatsplin)

#The residual variance is reduced
vc(oatsplin)

#The means do not change
lsmnitlin <- lsmeans(oatsplin, "nitro")
lsmgenlin <- lsmeans(oatsplin, "gen")
print(lsmnitlin)
print(lsmgenlin)

#The residuals plot has a better fit when the linear trend is accounted for  
qqmath(ranef(oatsplin))

Review Questions, Answers: 
True or False:

1. The central F distribution is calculated based on the numerator and error 
degrees of freedom. 
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TRUE. The F distribution depends on the ratio between the treatment or numerator 
and the error or denominator degrees of freedom.
2. Type 1 error should always be controlled below 5% whenever possible. 

FALSE. While controlling α error below 0.05 or 5% is common, it is not always the 
most desirable option given the relative importance of α and β errors and the con-
straints to the experimental design. 
3. The noncentrality parameter is associated with the effect size. 

TRUE. The noncentrality parameter, λ, is determined by the effect size, the size of 
the experiment, and the unexplained experimental error. 
4. Experiments should always be designed to obtain the minimum average error. 

FALSE. This is a bit of a trick question. If money, space, time, and other similar con-
straints did not impact experimental design then this statement would be true, but 
because these all do impact our ability to conduct research, tradeoffs are required. 
5. Effect sizes can be divided into those that measure differences between groups 
and those that measure association. 

TRUE. While there are many statistics that can be used to measure effect size, this 
is a nice way to group them. 
6. When spatial variation is discovered after the experiment is conducted, it will 
have to be included in the unexplained error for the experiment. 

FALSE. Major trends can be detected and removed and other types of mixed model 
design that model covariance among experimental errors can be used to model 
spatial variation. But it is a good idea to anticipate spatial and temporal variation 
and block for it during the experimental design phase. 
7. An experiment with a good deal of power will be associated with a lower 
probability of false positives.

FALSE. Actually, more power will have a lower probability of false negatives (β) 
and may or may not impact false positive error (α) depending on the experimental 
design. 
8. The null hypothesis test is a valid approach to agronomic and environmental research.

TRUE. While criticized, the null hypothesis test still provides a good framework for 
decision making in agronomic and environmental research as long as the assump-
tions are met as described in this and other chapters in this book. 

Solutions to Exercises:
Question 1:
In SAS:
PROC MIXED DATA=YATES METHOD=REML COVTEST PLOTS=ALL; 
TITLE 'YATES OAT RCB ANALYSIS';
CLASS GEN NITRO BLOCK;
MODEL YIELD=GEN NITRO GEN*NITRO;
RANDOM BLOCK;
LSMEANS GEN NITRO GEN*NITRO/ E CL;
RUN; 

In R:
oatrcb <- lmer(yield ~  factor(nitro) * gen + (1|block), data=dat)
summary(oatrcb)
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anova(oatrcb)
fixef(oatrcb)
ranef(oatrcb)
vc(oatrcb)

#The means do not change
lsmnit <- lsmeans(oatrcb, "nitro")
lsmgen <- lsmeans(oatrcb, "gen")
print(lsmnit)
print(lsmgen)
qqmath(ranef(oatrcb))

Question 2:
In SAS:
PROC MIXED DATA=YATES METHOD=REML COVTEST PLOTS=ALL; 
TITLE 'YATES OAT RCB ANALYSIS WITH LINEAR TREND';
CLASS BLOCK GEN NITRO X;
MODEL YIELD=X GEN NITRO GEN*NITRO;
RANDOM BLOCK;
LSMEANS X GEN NITRO GEN*NITRO/ E CL;
RUN; 

In R:
oatrcblin <- lmer(yield ~ x + factor(nitro) * gen + (1|block/gen), 
data=dat)
summary(oatrcblin)
anova(oatrcblin)
fixef(oatrcblin)
ranef(oatrcblin)

#The residual variance is reduced
vc(oatrcblin)

#The means do not change
lsmnitlin <- lsmeans(oatrcblin, "nitro")
lsmgenlin <- lsmeans(oatrcblin, "gen")
print(lsmnitlin)
print(lsmgenlin)

#The residuals plot has a better fit when the linear trend is accounted for  
qqmath(ranef(oatrcblin))

QUESTION 3:  
In SAS or R:
Same as above except replace x with y. (R is case sensitive so use lower case).

Question 4:  
Notes:
Grand mean = 104.
25% of grand mean = 26.

Standard error of a difference can be calculated as (2*MSE/24)1/2 for Geno; (2*MSE/18) 1/2 
for Nitro and (2*MSE/6) 1/2 for their interaction.  The t value for each of these can be calcu-
lated as 26/SED for each effect and the F value for the contrast as t2.  The following code 
can then be used to figure out experimental design parameters that work for each effect.  
An example for geno in the RCB analysis is below for alpha=0.05.

IN SAS:
DATA ERROR;  SET ALPHA;
TITLE 'ALPHA ERROR FOR GEN';
MSE=254.2; *MSE is from mixed model analysis of dataset;
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SED=SQRT((2*MSE)/24);
ALPHA=0.05;
FVALUE=(26/SED)*(26/SED);
PROB=(1-ALPHA);
NUMDF=2;
DENDF=60;
NCP=NUMDF*FVALUE;
FCRIT=FINV(PROB, NUMDF, DENDF,0);
POWER=1-PROBF(FCRIT,NUMDF,DENDF,NCP);
BETA=1-POWER;
AVEERROR=(ALPHA+BETA)/2;
PROC PRINT DATA=ERROR;
RUN;

In R: 
Error<-read.csv("alpha.csv")
Error$alpha<-0.05
Error$prob <- (1-(alpha))
Error$numdf<-2
Error$dendf<-60
Error$sed<-(sqrt(2*254/24))
Error$t<-(26/Error$sed)
Error$Fvalue<-(Error$t)*(Error$t);
Error<-transform(Error,ncp=(numdf*Fvalue))
Error<-transform(Error,fcrit=qf(alpha,numdf,dendf))
Error<-transform(Error,power=1-pf(fcrit,numdf,dendf,ncp))
Error<-transform(Error,beta=1-power)
Error<-transform(Error,aveterror=(alpha+beta)/2)
str(Error)
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Chapter 2: Analysis of Variance

Marla McIntosh

Supplement 1. Statbean Data. 

Supplement 1. Statbean Data

Loc Blk Mulch Ca_Trt pH Ca Pct_Total Trt_No

Central 1 0 0 5.58 765.604 5 1

Central 1 0 G1X 5.91 1072.395 5.93 2

Central 1 0 G2X 5.55 884.1182 13.33 3

Central 1 0 L1X 6.07 976.6795 7.86 4

Central 1 0 L2X 6.07 1030.769 12.86 5

Central 2 0 0 5.35 484.6031 29.23 1

Central 2 0 G1X 5.55 700.2342 22.5 2

Central 2 0 G2X 5.6 944.7611 24.44 3

Central 2 0 L1X 6.27 1651.486 15.38 4

Central 2 0 L2X 5.97 1159.154 24.29 5

Central 3 0 0 5.34 352.0018 28.7 1

Central 3 0 G1X 5.18 350.7162 34.55 2

Central 3 0 G2X 5.93 1041.485 25.83 3

Central 3 0 L1X 5.55 554.0077 22.61 4

Central 3 0 L2X 6.13 1397.836 18.33 5

West 1 0 0 5.89 1152.135 17.14 1

West 1 0 G1X 6.16 1730.585 10.71 2

West 1 0 G2X 5.66 1269.248 7.86 3

West 1 0 L1X 6.63 2309.693 25 4

West 1 0 L2X 6.52 1764.905 21.43 5

West 2 0 0 7.1 2673.196 28.89 1

West 2 0 G1X 6.89 2127.684 49.29 2

West 2 0 G2X 7.12 2806.581 40.83 3

West 2 0 L1X 7.24 2414.204 46.43 4

West 2 0 L2X 7.31 3146.425 23.57 5

West 3 0 0 6.76 2116.01 28.15 1

West 3 0 G1X 6.74 2522.883 22.96 2

West 3 0 G2X 6.77 1868.224 32.59 3

West 3 0 L1X 6.94 2513.69 30.37 4
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West 3 0 L2X 6.97 2452.25 24.35 5

East 1 0 0 3.85 71.59624 0.77 1

East 1 0 G1X 3.93 84.90909 2.14 2

East 1 0 G2X 3.88 51.67797 0 3

East 1 0 L1X 4.12 94.65318 0.74 4

East 1 0 L2X 4.44 294.2328 2.96 5

East 2 0 0 4.21 153.2803 35.71 1

East 2 0 G1X 4.08 225.5879 16.43 2

East 2 0 G2X 4.18 242.5236 6.4 3

East 2 0 L1X 4.43 360.1202 38.57 4

East 2 0 L2X 4.76 465.0364 47.86 5

East 3 0 0 3.98 33.1985 0 1

East 3 0 G1X 4.09 79.34783 0 2

East 3 0 G2X 3.99 101.7181 0 3

East 3 0 L1X 3.92 22.76089 2.22 4

East 3 0 L2X 4.12 83.36722 1.6 5

Central 1 1 0 6.05 893.019 2.86 6

Central 1 1 G1X 5.81 930.887 4.29 7

Central 1 1 G2X 5.87 1203.349 9.29 8

Central 1 1 L1X 6.08 1084.533 6.67 9

Central 1 1 L2X 6.12 1450.82 9.29 10

Central 2 1 0 5.53 588.843 4.44 6

Central 2 1 G1X 5.69 823.8247 3.2 7

Central 2 1 G2X 5.57 860.6557 3.33 8

Central 2 1 L1X 5.7 863.8875 5.22 9

Central 2 1 L2X 5.78 817.8222 3.57 10

Central 3 1 0 5.47 646.8615 3.75 6

Central 3 1 G1X 6.09 1521.4 4.76 7

Central 3 1 G2X 5.08 548.4234 16.67 8

Central 3 1 L1X 6.08 1605.782 5.45 9

Central 3 1 L2X 6.29 1496.161 7.83 10

West 1 1 0 6.48 1799.348 21.54 6

West 1 1 G1X 6.42 1593.126 13.33 7

West 1 1 G2X 5.76 1171.701 14.62 8

West 1 1 L1X 6.58 2200.379 38.46 9

West 1 1 L2X 6.84 2782.864 24 10

West 2 1 0 7.02 2211.675 27.86 6

West 2 1 G1X 7.1 2497.6 51.43 7

West 2 1 G2X 7.15 2718.435 58.57 8

West 2 1 L1X 7.25 2562.135 61.43 9
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West 2 1 L2X 7.28 2625.38 37.14 10

West 3 1 0 6.92 1977.072 40 6

West 3 1 G1X 6.67 1532.194 38.4 7

West 3 1 G2X 6.58 1954 19.05 8

West 3 1 L1X 6.93 2139.155 30 9

West 3 1 L2X 7.03 2470.402 41.6 10

East 1 1 0 4.03 12.2972 0 6

East 1 1 G1X 3.97 45.73493 0 7

East 1 1 G2X 3.92 97.56944 0 8

East 1 1 L1X 4.06 35.53188 1.48 9

East 1 1 L2X 4.12 56.58363 1.6 10

East 2 1 0 4.33 187.6108 15 6

East 2 1 G1X 4.21 305.4299 11.43 7

East 2 1 G2X 4.13 375.1605 17.14 8

East 2 1 L1X 4.67 416.7319 22.86 9

East 2 1 L2X 4.76 450 25 10

East 3 1 0 3.95 9.765314 0 6

East 3 1 G1X 3.91 173.9345 0 7

East 3 1 G2X 3.75 402.1609 1.6 8

East 3 1 L1X 4.21 123.3071 0.69 9

East 3 1 L2X 4.14 210.8767 1.48 10

Supplement 2.  SAS code - PROC MIXED for pH - by location 
(with and without contrast statements) and combined over 
locations.

Note: The data used for this program is  provided as an Excel file ‘Statbean Data.xlsx’ 
in Supplement 1 and as a SAS dataset ‘statbean.sas7bdat’ in Supplement 6.

Replace the Data statement to use the dataset in Supplement 1.
data anova.statbean; set anova.statbean;
run;
proc sort; by loc;
run;
Title ‘Statbean Data’;
proc print; 
run;
Title ‘Mixed pH ANOVA by location without contrasts’;
proc mixed data=anova.statbean plots=residualpanel method=type3; by 
loc;
class Blk Mulch Ca_Trt;
model pH=Mulch Ca_Trt Mulch*Ca_Trt;
random Blk;
lsmeans Mulch Ca_Trt Mulch*Ca_Trt;
run;
Title ‘Mixed pH ANOVA combined locations’;
proc mixed data=anova.statbean plots=residualpanel method=type3; 
class Loc Blk Mulch Ca_Trt;
model pH=Loc|Mulch|Ca_Trt;
random Blk(Loc);
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lsmeans Loc|Mulch|Ca_Trt;
run;
Title ‘Mixed pH ANOVA by location with contrasts’;
proc mixed data=anova.statbean plots=residualpanel method=type3; by 
loc;
class Blk Mulch Ca_Trt;
model pH=Mulch Ca_Trt Mulch*Ca_Trt;
random Blk;
lsmeans Mulch Ca_Trt Mulch*Ca_Trt;
contrast “Main Effect-Gypsum Linear” Ca_Trt -1 0 1 0 0/E;
contrast “Main Effect-Gypsum Quadratic” Ca_Trt 1 -2 1 0 0/E;
contrast “Main Effect-Lime Linear” Ca_Trt -1 0 0 0 1/E;
contrast “Main Effect-Lime Quadratic” Ca_Trt 1 0 0 -2 1/E;
contrast “Main Effect-Lime vs Gypsum” Ca_Trt 0 1 1 -1 -1/E;
contrast “Interaction-Gypsum Linear*Mulch” Ca_Trt*Mulch -1 0 1 0 0 1 0 -1 0 0/E;
contrast “Interaction-Gypsum Quadratic* Mulch” Ca_Trt*Mulch 1 -2 1 0 0 -1 2 -1 0 0/E;
contrast “Interaction-Lime Linear*Mulch” Ca_Trt*Mulch -1 0 0 0 1 1 0 0 0 -1/E;
contrast “Interaction-Lime Quadratic*Mulch” Ca_Trt*Mulch 1 0 0 -2 1 -1 0 0 2 -1/E;
contrast “Interaction-Lime vs Gypsum*Mulch” Ca_Trt*Mulch 0 1 1 -1 -1 0 -1 -1 1 1/E;
run;

Supplement 3. Provided in the electronic supplemental 
materials.

Supplement 4. SAS code for ANOVA for pH, Ca, and Pct_Total

data anova.statbean; set anova.statbean;
proc sort; by loc;
run;
Title 'Statbean Data';
proc print; 
run;
Title 'Mixed pH ANOVA by location';
proc mixed data=anova.statbean plots=residualpanel method=type3; by 
loc;
class Blk Mulch Ca_Trt;
model pH=Mulch Ca_Trt Mulch*Ca_Trt;
random Blk;
lsmeans Mulch Ca_Trt Mulch*Ca_Trt;
run;
Title 'Mixed pH ANOVA combined locations';
proc mixed data=anova.statbean plots=residualpanel method=type3; 
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class Loc Blk Mulch Ca_Trt;
model pH=Loc|Mulch|Ca_Trt;
random Blk(Loc);
lsmeans Loc|Mulch|Ca_Trt;
run;
Title 'Mixed Calcium ANOVA by location';
proc mixed data=anova.statbean plots=residualpanel method=type3; by 
loc;
class Blk Mulch Ca_Trt;
model Ca=Mulch Ca_Trt Mulch*Ca_Trt;
random Blk;
lsmeans Mulch Ca_Trt Mulch*Ca_Trt;
run;
Title 'Mixed Calcium ANOVA combined locations';
proc mixed data=anova.statbean plots=residualpanel method=type3; 
class Loc Blk Mulch Ca_Trt;
model Ca=Loc|Mulch|Ca_Trt;
random Blk(Loc);
lsmeans Loc|Mulch|Ca_Trt;
run;
Title 'Mixed Percent total ANOVA by location';
proc mixed data=anova.statbean plots=residualpanel method=type3; by 
loc;
class Blk Mulch Ca_Trt;
model Pct_total=Mulch Ca_Trt Mulch*Ca_Trt;
random Blk;
lsmeans Mulch Ca_Trt Mulch*Ca_Trt;
run;
Title 'Mixed Percent total ANOVA combined locations';
proc mixed data=anova.statbean plots=residualpanel method=type3; 
class Loc Blk Mulch Ca_Trt;
model Pct_total=Loc|Mulch|Ca_Trt;
random Blk(Loc);
lsmeans Loc|Mulch|Ca_Trt;
run;

Supplement 5 provided in the electronic supplemental materials.

Answers to Review Questions

1. True

2. False

3. False. The F-value numerator is the treatment MS which includes both 
Var(Treatment) and Var(Residual). See the EMS.

4. False, the Type 1 error rate is a probability set by the researcher. 

5. True
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Chapter 3: Blocking Principles for 
Biological Experiments

Michael D. Casler

Example 1. Conduct a linear mixed model ANOVA from an augmented design.

Problem: Augmented designs are unbalanced, specifically with reference to test 
treatments that are typically unreplicated.

Solution: Residual or error variances must be estimated from replicated treatments, 
which should be arranged in a manner that also allows estimation and removal of 
some spatial variation within the experimental area. Estimates for unreplicated 
treatments are then adjusted for spatial variation.

Example: Twenty-one soybean cultivars were evaluated in an augmented design, 
with four cultivars arranged in three randomized complete blocks and the other 17 
cultivars each represented in only one of the three blocks (Scott and Milliken, 1993). 
Each column of the data set below represents one block.

SAS Code: The following code gives an ANOVA with a separate F test for check 
cultivars and test cultivars. It also provides adjusted cultivar means and standard 
errors for the four check cultivars and the 17 test cultivars. Note that we are using a 
trick that will allow SAS Proc Mixed to compute a separate p value for check culti-
vars, which are replicated, and for test cultivars, which are not replicated. The trick 
is to recode the cultivar number into two sets of numbers. The first set, c, codes the 
checks and has c = 0 for all the test cultivars. The second set, x, codes the test culti-
vars and has x = 0 for the check cultivars. The ANOVA model is then set up with two 
terms: check cultivars and test cultivars nested within check cultivars.

options nocenter;
data a; input entryno entry$ y1 y2 y3; datalines;
1    Sibley     4098  4060  4283
1    Sibley       .     .   3952
2    Hardin     4020  4414  3571
3    Weber      4440  3835  4154
4    Kato       3860  3865  3674
5    TEgg       2169    .     .
6    Harlon     3250    .     .
7    Rampage    3807    .     .
8    Steele     4068    .     .
9    Vinton     3871    .     .
10   Vinton81   3838    .     .
11   BSR101       .   4244    .
12   Norsoy       .   3290    .
13   WBlack       .   3019    .
14   Mandarin     .   3506    .
15   Hark         .   4384    .
16   Coles        .   4148    .
17   Hodgson78    .     .   4167
18   Lakota       .     .   4023
19   Mandan507    .     .   2435
20   Bert         .     .   4595
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21   Leslie       .     .   3957
;
data b; set a;
yield=y1; block=1; output;
yield=y2; block=2; output;
yield=y3; block=3; output;
drop y1-y3; run;
data c; set b;
x=entryno; if x<5 then x=0;
c=entryno; if c>4 then c=0;
proc mixed; class block x c;
model yield = c x(c);
random block;
lsmeans x(c);
run;

SAS Output: The output below contains the mixed models ANOVA and the least 
squares means for all 21 cultivars.

The Mixed Procedure

                  Model Information
Data Set                     WORK.C
Dependent Variable           yield
Covariance Structure         Variance Components
Estimation Method            REML
Residual Variance Method     Profile
Fixed Effects SE Method      Model-Based
Degrees of Freedom Method    Containment

             Class Level Information
Class    Levels    Values
block         3    1 2 3
x            18    0 5 6 7 8 9 10 11 12 13 14 15
                   16 17 18 19 20 21
c             5    0 1 2 3 4

            Dimensions
Covariance Parameters             2
Columns in X                     27
Columns in Z                      3
Subjects                          1
Max Obs per Subject              30
          Number of Observations
Number of Observations Read              66
Number of Observations Used              30
Number of Observations Not Used          36

                     Iteration History
Iteration    Evaluations    -2 Res Log Like       Criterion
        0              1       130.48103794
        1              1       130.48103794      0.0000000

                   Convergence criteria met.

The Mixed Procedure
Covariance Parameter

      Estimates
Cov Parm     Estimate
block               0
Residual        68856
           Fit Statistics
-2 Res Log Likelihood           130.5
AIC (Smaller is Better)         132.5
AICC (Smaller is Better)        133.1
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BIC (Smaller is Better)         131.6
        Type 3 Tests of Fixed Effects
              Num     Den
Effect         DF      DF    F Value    Pr > F
c               4       7       3.61    0.0667
x(c)           16       7       6.50    0.0090
                          Least Squares Means
                                 Standard
Effect    x     c   Estimate     Error     DF    t Value    Pr > |t|
x(c)      5   0    2169.00      262.41     7       8.27      < 0.0001
x(c)      6   0     3250.00     262.41     7      12.39      < 0.0001
x(c)      7   0     3807.00     262.41     7      14.51      < 0.0001
x(c)      8   0     4068.00     262.41     7      15.50      < 0.0001
x(c)      9   0     3871.00     262.41     7      14.75      < 0.0001
x(c)     10   0     3838.00     262.41     7      14.63      < 0.0001
x(c)     11   0     4244.00     262.41     7      16.17      < 0.0001
x(c)     12   0     3290.00     262.41     7      12.54      < 0.0001
x(c)     13   0     3019.00     262.41     7      11.51      < 0.0001
x(c)     14   0     3506.00     262.41     7      13.36      < 0.0001
x(c)     15   0     4384.00     262.41     7      16.71      < 0.0001
x(c)     16   0     4148.00     262.41     7      15.81      < 0.0001
x(c)     17   0     4167.00     262.41     7      15.88      < 0.0001
x(c)     18   0     4023.00     262.41     7      15.33      < 0.0001
x(c)     19   0     2435.00     262.41     7       9.28      < 0.0001
x(c)     20   0     4595.00     262.41     7      17.51      < 0.0001
x(c)      0   1     4098.25     131.20     7      31.24      < 0.0001
x(c)      0   2     4001.67     151.50     7      26.41      < 0.0001
x(c)      0   3     4143.00     151.50     7      27.35      < 0.0001
x(c)      0   4     3799.67     151.50     7      25.08      < 0.0001

Results and Conclusions: Check cultivars differed from each other with a p 
value of 0.07, while the test cultivars had p < 0.01. The check cultivars have 4 df in 
the numerator because this term is testing differences among five means: Sibley, 
Hardin, Weber, Cato, and the mean of all 17 test cultivars. Least squares means 
allow the researcher to choose the best test cultivars for further, more advanced, 
testing. Least squares means are adjusted for block effects, but not for spatial 
variation on a finer scale. Note that there are three standard error values, each one 
corresponding to r = 1, r = 4, or r = 5 experimental units per cultivar (262, 151, and 
131, respectively).

Example 2. Make a logical and objective decision regarding whether or not random design effects 
should be retained in the final model for publication purposes.

Problem: Modern mixed models analysis is often taught in a manner that encour-
ages researchers to used reduced models, containing only those terms that are im-
portant. This practice results in pooling random design effects with residual effects. 
There are three philosophies that can be employed in pooling when it is clear that a 
design component is small or nonsignificant: always pool, never pool, or pool using 
an objective decision tool that seeks to avoid Type 2 errors.

Solution: The example below will illustrate how to employ a likelihood ratio test to 
quantify a p-value for a random design component, then set a decision rule for “call-
ing” that term significant or nonsignificant, with the final result to either include or 
exclude that term form the model. The methodology is based on the concepts and 
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philosophy of Carmer et al. (1969) but using modern likelihood ratio tests, rather 
than F tests.

Example: The data are percentage survivorship of 14 Italian ryegrass (Lolium multi-
florum Lam.) cultivars planted in factorial combination with three seeding rates (200, 
400, and 800 seeds m-2). The experiment was designed as a randomized complete 
block with four replicates and randomized with seeding rates as whole plots and 
cultivars as subplots.

SAS Code: There are two blocks of data in the SAS code below.  The first consists 
of the field map in 24 rows ´ 7 columns: rows are identified by row number, rep 
number, and seeding rate, while the data in each column are the cultivar numbers 
(1 through 14).  The second block of data consists of percentage survivorship for the 
24 ´ 7 grid.  The two blocks of data are merged together by row number, prior to 
conducting the analyses of variance.

options nocenter;
data a; input row rep rate x1-x7; datalines;
 1      4     40      1     11     13      9      4      7     10
 2      4     40      5      8      2      6      3     12     14
 3      4     80      3     11      6      1     10      7      8
 4      4     80     14      9      4     12      5      2     13
 5      4     20      4      8      2     11      1     10     12
 6      4     20      3      9     14      7      6     13      5
 7      3     80      4      5      2      3     10      6      1
 8      3     80      8     12      7     14      9     11     13
 9      3     40      5      7      9      8      4     14     11
10      3     40      1      2      3     10     13     12      6
11      3     20     11      5      4      3     13      7      1
12      3     20      6     14      9      8      2     10     12
13      2     40     13      9      2     12      6      8      5
14      2     40     11     14     10      3      4      1      7
15      2     20     12     13      7      1     11     10      4
16      2     20      6     14      5      9      3      8      2
17      2     80     14      1      9     12      2      3      6
18      2     80      4     11      8      5      7     10     13
19      1     80      5      2      8      9      3     14     11
20      1     80     12      1     13     10      7      4      6
21      1     20     11      1      8     13     14      7     10
22      1     20      5      3      6      4      9      2     12
23      1     40     10      1     12     11      4      8      2
24      1     40      6      5     14     13      3      7      9
;
data aa; set a;
cultivar=x1; col=1; output;
cultivar=x2; col=2; output;
cultivar=x3; col=3; output;
cultivar=x4; col=4; output;
cultivar=x5; col=5; output;
cultivar=x6; col=6; output;
cultivar=x7; col=7; output;
drop x1-x7;
proc sort; by row col; run;
data b; input row x1-x7; datalines;
 1     50      5      5      5      5      5      5
 2      5     50     40      5      5      5     10
 3      5      5      5     40      5     10     25
 4     50      5     60      5     20     45      5
 5      5     20      5      5     20      5      5
 6      5      5     10      5      5      5      5
 7     20      5     70      5      5     10     50
 8     40      5      5     60     10     15      5
 9      5     10      5     80     50     50      5
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10     30     80      5      5     10      5      5
11      5      5     20      5      5     10     40
12      5      5      5     40     30      5      5
13      5      5     40      5      5     30      5
14      5     15      5      5     50     30     20
15      5      5      5     15      5      5     35
16      5     15      5      5      5     25     50
17     20     75     10      5     60      5      5
18     30      5     60     10     30      5      5
19      5     80     75      5      5     30     15
20      5     60     15      5     40     55     10
21      5     10     20      5      5      5      5
22      5      5      5     10      5     40      5
23      5     25      5      5     40     30     65
24      5      5     40      5      5      5      5
;
data bb; set b;
gc95=x1; col=1; output;
gc95=x2; col=2; output;
gc95=x3; col=3; output;
gc95=x4; col=4; output;
gc95=x5; col=5; output;
gc95=x6; col=6; output;
gc95=x7; col=7; output;
drop x1-x7;
proc sort; by row col; run;
data c; merge aa bb; by row col;
libname arfs ‘~/arfs’;
proc mixed cl; class rep rate cultivar;
model gc95 = rate|cultivar; 
random rep rep*rate;
lsmeans cultivar;
run;
proc mixed cl; class rep rate cultivar;
model gc95 = rate|cultivar; 
random rep;
lsmeans cultivar;
run;

SAS Output: The output consists of mixed models analysis results and least squares 
means for cultivars for two different models. According to the model, least squares 
means for seeding rates and the cultivar ´ seeding rate interaction would also be 
important output, but have been left out here for brevity. The first model is the 
full model that includes three random effects: Blocks, Error(a), and Error(b) of the 
split-plot randomization. The second model is based on the visual observation that 
Error(a) is very small any may not actually be significant. The second model is iden-
tical to the first, except that it excludes Error(a), collapsing that term into Error(b), 
effectively treating this analysis as a simple randomized complete block without the 
split-plot randomization restriction.

The Mixed Procedure

                  Model Information
Data Set                     WORK.C
Dependent Variable           gc95
Covariance Structure         Variance Components
Estimation Method            REML
Residual Variance Method     Profile
Fixed Effects SE Method      Model-Based
Degrees of Freedom Method    Containment

              Class Level Information
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Class       Levels    Values
rep              4    1 2 3 4
rate             3    20 40 80
cultivar        14    1 2 3 4 5 6 7 8 9 10 11 12 13
                      14

            Dimensions
Covariance Parameters             3
Columns in X                     60
Columns in Z                     16
Subjects                          1
Max Obs per Subject             168

          Number of Observations
Number of Observations Read             168
Number of Observations Used             168
Number of Observations Not Used           0

                     Iteration History
Iteration    Evaluations    -2 Res Log Like       Criterion
        0              1      1013.63658070
        1              1      1011.54388284      0.00000000
                   Convergence criteria met.

            Covariance Parameter Estimates
Cov Parm    Estimate   Alpha    Lower    Upper
rep          2.2003    0.05    0.2619   1.377E10
rep*rate     4.3932    0.05    0.7764   33250 <--- This is Error(a)
Residual     108.39    0.05   85.2069    142.56

           Fit Statistics
-2 Res Log Likelihood          1011.5
AIC (Smaller is Better)        1017.5
AICC (Smaller is Better)       1017.7
BIC (Smaller is Better)        1015.7

          Type 3 Tests of Fixed Effects
                  Num     Den
Effect             DF      DF    F Value    Pr > F
rate                2       6      13.53    0.0060
cultivar           13     117      29.20    < 0.0001
rate*cultivar      26     117       1.96    0.0082

                            Least Squares Means
                                    Standard
Effect     cultivar    Estimate     Error     DF    t Value    Pr > |t|
cultivar     1       37.0833     3.1541     117     11.76    < 0.0001
cultivar     2       50.4167     3.1541     117     15.98    < 0.0001
cultivar     3        5.0000     3.1541     117     1.59      0.115
cultivar     4       31.6667     3.1541     117     10.04    < 0.0001
cultivar     5       6.6667     3.1541      117      2.11    0.0367
cultivar     6       5.8333     3.1541      117      1.85   0.0669
cultivar     7       12.5000     3.1541     117      3.96    0.0001
cultivar     8       41.2500     3.1541     117     13.08    < 0.0001
cultivar     9       5.8333      3.1541     117      1.85   0.0669
cultivar    10       5.0000      3.1541     117      1.59    0.1156
cultivar    11       6.6667      3.1541     117      2.11    0.0367
cultivar    12       5.0000      3.1541     117      1.59    0.1156
cultivar    13       6.2500      3.1541     117      1.98   0.0499
cultivar    14       25.8333      3.1541     117      8.19   < 0.0001

The Mixed Procedure
                  Model Information
Data Set                     WORK.C
Dependent Variable           gc95
Covariance Structure         Variance Components
Estimation Method            REML
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Residual Variance Method     Profile
Fixed Effects SE Method      Model-Based
Degrees of Freedom Method    Containment

              Class Level Information
Class       Levels    Values
rep              4    1 2 3 4
rate             3    20 40 80
cultivar        14    1 2 3 4 5 6 7 8 9 10 11 12 13
                      14

            Dimensions
Covariance Parameters             2
Columns in X                     60
Columns in Z                      4
Subjects                          1
Max Obs per Subject             168

          Number of Observations

Number of Observations Read             168
Number of Observations Used             168
Number of Observations Not Used           0

                     Iteration History
Iteration    Evaluations    -2 Res Log Like       Criterion
        0              1      1013.63658070
        1              1      1012.20561338      0.00000000
                   Convergence criteria met.

            Covariance Parameter Estimates
Cov Parm     Estimate     Alpha       Lower       Upper
rep            3.5932      0.05      0.7115     3947.53
Residual       111.39      0.05     88.0562      145.45

           Fit Statistics
-2 Res Log Likelihood          1012.2
AIC (Smaller is Better)        1016.2
AICC (Smaller is Better)       1016.3
BIC (Smaller is Better)        1015.0

          Type 3 Tests of Fixed Effects
                  Num     Den
Effect             DF      DF    F Value    Pr > F
rate                2     123      20.64    < 0.0001
cultivar           13     123      28.41    < 0.0001
rate*cultivar      26     123       1.91    0.0103

                            Least Squares Means
                                  Standard
Effect     cultivar    Estimate     Error     DF    t Value    Pr > |t|
cultivar    1        37.0833      3.1907    123    11.62     < 0.0001
cultivar    2        50.4167      3.1907    123    15.80     < 0.0001
cultivar    3         5.0000      3.1907    123     1.57     0.1197
cultivar    4        31.6667      3.1907    123     9.92     < 0.0001
cultivar    5         6.6667      3.1907    123     2.09     0.0387
cultivar    6         5.8333      3.1907    123     1.83    0.0699
cultivar    7        12.5000      3.1907    123     3.92     0.0001
cultivar    8        41.2500      3.1907    123    12.93     < 0.0001
cultivar    9         5.8333      3.1907    123     1.83    0.0699
cultivar   10         5.0000      3.1907    123     1.57     0.1197
cultivar   11         6.6667      3.1907    123     2.09     0.0387
cultivar   12         5.0000      3.1907    123     1.57     0.1197
cultivar   13         6.2500      3.1907    123     1.96     0.0524
cultivar   14        25.8333      3.1907    123     8.10     < 0.0001
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Results and Conclusions: The first step in interpreting the results is to conduct a like-
lihood ratio test of Error(a), in other words, testing the null hypothesis Ho:s2

a=0, where 
s2

a is the Error(a) covariance component (estimated as 4.39 in the first mixed models 
ANOVA). The formula for this test is to compute the difference between the −2RLL (re-
sidual log likelihood) values and divide them by the difference in the number of cova-
riance parameters. This becomes: (1012.2 − 1011.5)/(3 − 2) = 0.7. This value is tested as a 
c2 variate with 3 − 2 = 1 df, resulting in p = 0.40. Using the Carmer et al. (1969) guideline, 
that the null hypothesis should not be rejected unless p < 0.50, we would not reject this 
null hypothesis. In other words, we would not reduce the model; we would use the 
first mixed models analysis above as our final result, assuming all other diagnostics 
and results are correct. Note the change in denominator df between the two analyses, 
from 117 to 123—this is correctly indicating that the second estimate of residual vari-
ance is the pooled Error(a) and Error(b) value with 117 + 6 = 123 df. Also, note that the 
standard error of a cultivar mean actually went up after pooling, from 3.15 to 3.19—
this is another sign that pooling, or model reduction, is a bad idea in this case.

Example 3. Review Exercise. Arranging blocks and blocking patterns for future experiments.

Problem: Decisions on exactly how to arrange blocks in many field experiments 
are very difficult, because there is often little information available to determine if 
there are gradients and the patterns of any gradients. This is especially true on ag-
ricultural experiment stations, which are often located on sites that have a uniform 
visual appearance.

Solution: Conduct retrospective analyses of previous experiments on a given site to 
determine the size, scale, and direction of spatial variation.

Example: Step 1. Consider a randomized complete block experiment that has been 
completed on a given site. In this example, the experiment was designed with 12 
rows and 6 columns. Conduct an ANOVA on the data and output the residuals from 
the ANOVA. The blocking pattern of the previous experiment is not important, be-
cause the residuals are adjusted for both block and treatment effects, representing 
only pure spatial variation present in the field, at the scale of the experimental unit. 
In this case, we added the grand mean back to each residual, so that the data ap-
pears in the original units of measurement (Mg ha-1 of plant biomass). Step 2. Create 
dummy variables that can be used to simulate different blocking patterns on this 
site. Use each dummy variable to conduct a simulated one-way ANOVA with two 
sources of variation: among dummy blocks and within dummy blocks. Choose a 
design pattern with a high F ratio for dummy blocks (low within-block variance).

SAS Code: The following data are residuals + grand mean from a field experiment 
conducted in 6 columns ´ 12 rows, so that treatment and block variation has already 
been removed. The SAS code creates several combinations of rows and columns, af-
ter which it computes a one-way ANOVA for 22 different blocking arrangements 
and sizes. Comparison of the residual variances across the different blocking ar-
rangements and sizes can help a researcher better understand the scale and dimen-
sions of spatial variation within a field and plan better blocking schemes for future 
experiments.
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options nocenter;
data a; input row y1 y2 y3 y4 y5 y6;
datalines;
1         7.85      7.86      9.13      9.63     10.52     10.24
2        10.08     10.78     15.18     11.66     12.57     13.60
3        14.41     10.19     16.11     13.53     12.66     14.37
4        14.18      9.77     13.85     12.99     13.09     13.38
5         9.87      6.24      7.27      9.68     13.91      9.62
6        11.63     14.00     15.34     10.99     13.04     13.21
7        11.39     12.33     18.57     18.65     12.79     12.10
8        19.20     13.75     11.47      9.43     17.94      9.26
9        19.03     13.59     11.52     14.09     16.19     12.21
10       11.31      5.52     11.40      9.71     13.51     10.65
11        8.23     13.27     14.51     13.16     17.15     16.81
12       12.59     11.27     11.44     13.58     15.69     13.87
;
data b; set a;
yield=y1; col=1; output;
yield=y2; col=2; output;
yield=y3; col=3; output;
yield=y4; col=4; output;
yield=y5; col=5; output;
yield=y6; col=6; output;
drop y1-y6; run;
data c; set b;
r1=row;
r2=int((row+1)/2);
r3=int((row+2)/3);
r4=int((row+3)/4);
r6=int((row+5)/6);
c1=col;
c2=int((col+1)/2);
c3=int((col+2)/3);
proc glm; class r1 c1; model yield = r1*c1;
proc mixed; class r2 c1; model yield = r2*c1;
proc mixed; class r3 c1; model yield = r3*c1;
proc mixed; class r4 c1; model yield = r4*c1;
proc mixed; class r6 c1; model yield = r6*c1;
proc mixed; class c1; model yield = c1;
proc mixed; class r1 c2; model yield = r1*c2;
proc mixed; class r2 c2; model yield = r2*c2;
proc mixed; class r3 c2; model yield = r3*c2;
proc mixed; class r4 c2; model yield = r4*c2;
proc mixed; class r6 c2; model yield = r6*c2;
proc mixed; class c2; model yield = c2;
proc mixed; class r1 c3; model yield = r1*c3;
proc mixed; class r2 c3; model yield = r2*c3;
proc mixed; class r3 c3; model yield = r3*c3;
proc mixed; class r4 c3; model yield = r4*c3;
proc mixed; class r6 c3; model yield = r6*c3;
proc mixed; class c3; model yield = c3;
proc mixed; class r1; model yield = r1;
proc mixed; class r2; model yield = r2;
proc mixed; class r3; model yield = r3;
proc mixed; class r4; model yield = r4;
proc mixed; class r6; model yield = r6; run;

SAS Output: The output from this SAS code results in one GLM ANOVA, which pro-
vides the variance among the raw yield values. This value of 8.63 is the estimated re-
sidual variance expected from the use of a completely randomized design on this site. 
The remaining output consists of the results from 22 mixed models ANOVAs, only 
the first of which is shown below. The critical item here is the Residual Covariance 
Parameter estimate of 9.0313. The remaining output shown below consists of the 
“Residual” line from all 22 Proc Mixed ANOVAs. Each of the 22 Proc Mixed ANOVAs 
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provides a residual variance that would be expected for a different blocking design. 
For example, the first one corresponds to blocks that contain two experimental units 
in an arrangement of 2 rows ´ 1 column, while the last one corresponds to blocks 
that contain 36 experimental units in an arrangement of 6 rows ´ 6 columns.

The GLM Procedure
              Class Level Information

Class         Levels    Values

r1                12    1 2 3 4 5 6 7 8 9 10 11 12
c1                 6    1 2 3 4 5 6

Number of Observations Read          72
Number of Observations Used          72

The GLM Procedure
Dependent Variable: yield

                              Sum of
Source             DF         Squares     Mean Square    F Value    Pr > F

Model              71     612.7471875       8.6302421        .       .
Error               0       0.0000000        .
Corrected Total    71     612.7471875

R-Square     Coeff Var      Root MSE    yield Mean
1.000000           .               .      12.49458

Source             DF       Type I SS     Mean Square    F Value    Pr > F
r1*c1              71     612.7471875       8.6302421        .       .

The Mixed Procedure
                   	 Model Information
Data Set                     WORK.C
Dependent Variable           yield
Covariance Structure         Diagonal
Estimation Method            REML
Residual Variance Method     Profile
Fixed Effects SE Method      Model-Based
Degrees of Freedom Method    Residual

             Class Level Information
Class    Levels    Values
r2            6    1 2 3 4 5 6
c1            6    1 2 3 4 5 6

            Dimensions
Covariance Parameters             1
Columns in X                     37
Columns in Z                      0
Subjects                          1
Max Obs per Subject              72

          Number of Observations
Number of Observations Read              72
Number of Observations Used              72
Number of Observations Not Used           0

Covariance Parameter
      Estimates
Cov Parm     Estimate
Residual       9.0313
           Fit Statistics
-2 Res Log Likelihood           206.3
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AIC (Smaller is Better)         208.3
AICC (Smaller is Better)        208.5
BIC (Smaller is Better)         209.9

        Type 3 Tests of Fixed Effects
              Num     Den
Effect         DF      DF    F Value    Pr > F
r2*c1          35      36       0.91    0.6093

Residual	 9.0313
Residual	 8.0655
Residual	 9.0267
Residual	 8.0114
Residual	 8.1919
Residual	 5.1116
Residual	 8.0005
Residual	 7.5977
Residual	 8.6949
Residual	 8.0895
Residual	 8.3881
Residual	 6.6952
Residual	 7.89
Residual	 7.8557
Residual	 8.7369
Residual	 8.1976
Residual	 8.5585
Residual	 6.5478
Residual	 7.8181
Residual	 8.0338
Residual	 8.7223
Residual	 8.1588

Results and Conclusions: The best way to visualize these results is to organize 
them into a graph. The residual variances above were matched up with two addi-
tional columns of data, the number of rows within the blocks and the number of col-
umns within the blocks. The graph below illustrates the relationships. Clearly, the 
best three blocking scenarios were based on a single row across 2, 3, or 6 columns. 
All scenarios with multiple rows were relatively inefficient, indicating that most of 
the spatial variation was in the direction of rows. These results indicate that future 
experiments in this field should make all attempts to block out the variability associ-
ated with rows.



556 Appendix A 

Chapter 4: Power and Replication— 
Designing Powerful Experiments

Michael D. Casler

EXERCISE #1. 

Predict the power of a future hypothetical experiment using the probability distri-
bution method.

Solution

Using estimates of residual variances and covariance parameter estimates of other ran-
dom factors estimated from previous experiments, it is possible to predict the power of 
future experiments under a wide range of design scenarios.  From these predictions, it 
is then possible to make an intelligent assessment and comparison of different designs 
and choose an optimal design that balances statistical power with financial cost.

Example

Consider a proposed completely randomized design in which treatments are rep-
licated as shown in Figure 1C and, additionally, multiple sampling (observational) 
units are created within each experimental unit, from which one data point is col-
lected on each observational unit.  This could equally apply to experiments in the 
field, glasshouse, laboratory, or benchtop.  Replicates are nested within treatments 
and sampling units are nested within experimental units.  The goal is to detect a 
difference between treatment means of 5% at a Type 1 error rate of a = 0.05.  Prior 
estimates of experimental error (5) and sampling error (10) are available (covariance 
parameter estimates of random effects from previous experiments); these values are 
defined in the "parms" statement.

SAS code

The SAS code below computes the expected power for the design described above 
with r = 4 replicates per treatment and s = 2 sampling units per experimental unit.  It 
first creates the representative data set with treatment means of 95 and 100, follow-
ing which Proc GLIMMIX is used to compute the F-ratio within the representative 
data set.  The final set of computations generates the non-centrality parameter, as-
suming a normal distribution, which then leads to the power computation.  Any 
of the input parameters can be changed to allow investigation and comparison of 
different designs.
options nocenter;
data a; input trt y;
*CREATE A REPRESENTATIVE DATA SET WITH 4 REPS AND 2 SAMPLES PER EXPTL 
UNIT;
do rep=1 to 4 by 1;
do samples=1 to 2 by 1;
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output; 
end; 
end;
*CREATE TREATMENT MEANS WITH THE DESIRED DETECTION VALUE;
datalines;
1 95
2 100
run;
*COMPUTE THE NON-CENTRALITY PARAMETER;
data b; set a;
proc glimmix; class trt rep; 
model y = trt;
random rep(trt);
*INPUT PARAMETER ESTIMATES FOR EXPTL AND SAMPLING ERRORS;
parms (5)(10) / hold=1,2;
ods output tests3=power_terms;
*COMPUTE POWER OF THE TEST;
data power; set power_terms;
alpha=0.05;
ncparm=numdf*Fvalue;
F_critical=finv(1-alpha, numdf, dendf, 0);
power=1-probf(F_critical, numdf, dendf, ncparm);
proc print;
run;

SAS output

 The output consists of one run of Proc GLIMMIX, including all relevant diagnostic 
and estimation information.  The last line is the result of the "proc print" statement, 
printing out the results of the computations made after obtaining the GLIMMIX 
output.
The GLIMMIX Procedure

                    Model Information
Data Set                     WORK.B
Response Variable            y
Response Distribution        Gaussian
Link Function                Identity
Variance Function            Default
Variance Matrix              Not blocked
Estimation Technique         Restricted Maximum Likelihood
Degrees of Freedom Method    Containment
  Class Level Information
Class    Levels    Values
trt           2    1 2
rep           4    1 2 3 4
Number of Observations Read          16
Number of Observations Used          16
           Dimensions
G-side Cov. Parameters         1
R-side Cov. Parameters         1
Columns in X                   3
Columns in Z                   8
Subjects (Blocks in V)         1
Max Obs per Subject           16

          Parameter Search

                           Objective
   CovP1       CovP2        Function

  5.0000     10.0000    66.284236398

           Optimization Information

Optimization Technique        Dual Quasi-Newton
Parameters in Optimization    2
Equality Constraints          2
Lower Boundaries              2
Upper Boundaries              2
Fixed Effects                 Profiled
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Starting From                 Data

                                Iteration History
                                        Objective            Max
Iteration  Restarts  Evaluations        Function      Change Gradient
    0           0          4           66.284236398            0

      Convergence criterion (ABSGCONV=0.00001) satisfied.

           Fit Statistics
-2 Res Log Likelihood          66.28
AIC  (smaller is better)       66.28
AICC (smaller is better)       66.28
BIC  (smaller is better)       66.28
CAIC (smaller is better)       66.28
HQIC (smaller is better)       66.28
Generalized Chi-Square          0.00
Gener. Chi-Square / DF          0.00

 Covariance Parameter Estimates
                        Standard
Cov Parm    Estimate       Error
rep(trt)      5.0000           .
Residual     10.0000           .

        Type III Tests of Fixed Effects
              Num      Den
Effect         DF       DF    F Value    Pr > F
trt             1        6       5.00    0.0667

                  Num

Obs Effect DF DenDF FValue ProbF alpha ncparm F_critical power

1 trt 1 6 5.00 0.0667 0.05 5 5.98738 0.46741

Results and Conclusions

 The predicted power for this future hypothetical design is 0.47.  Increasing the num-
ber of replicates or samples would increase the predicted power, a result that can 
easily be investigated by repeated runs of this code, simply by changing the values 
in the two "do" statements.

EXERCISE #2. 
Solution

Expanding on Example #1, we broaden the SAS code to a number of different designs 
using a SAS macro.

Example

Consider the proposed completely randomized design in which treatments are rep-
licated as shown in Figure 1C and, additionally, multiple sampling (observational) 
units are created within each experimental unit, from which one data point is col-
lected on each observational unit (Example #1).  Replicates are nested within treat-
ments and sampling units are nested within experimental units.  The goal remains 
to detect a difference between treatment means of 5% at a Type 1 error rate of a = 0.05.  
Prior estimates of experimental error (5) and sampling error (10) are available.  We 
wish to predict the power for six different designs with r = 4, 5, or 6 replicates and 
s = 2 or 3 sampling units per replicate.
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SAS code

The SAS code below computes the expected power for the design described above 
for all six variations of the numbers of replicates per treatment and sampling units 
per experimental unit.  It first creates a macro titled "one".  The macro then creates 
two new variables: "obsv" is the number of sampling units per experimental unit 
and "repl" is the number of replicates.  These two values are allowed to vary with 
maxima of "obsmax" and "repmax", respectively.  The line that reads "%one(3,6);" is 
the place to set the upper limits for the investigation.  In this example, we have cho-
sen to vary the number of replicates from 4 to 6 and the number of sampling units 
from 2 to 3.  The remainder of the code is identical to that in Example #1.
options nocenter;
%macro one(obsmax,repmax);
data a;
%do obsv=2 %to &obsmax;
group1=&obsv;
%do repl=4 %to &repmax;
group2=&repl;
do obs=1 to &obsv by 1;
do rep=1 to &repl by 1;
do trt=0 to 1 by 1;
output; end; end; end;
%end; %end;
%mend one;
%one(3,6);          /*   <--- change values here     */
run;
proc sort; by group1 group2;
data b; set a; by group1 group2;
if trt=0 then y=95;
if trt=1 then y=100;
run;
proc glimmix; class trt rep; by group1 group2;
model y = trt;
random rep(trt);
parms (5)(10) / hold=1,2;
ods output tests3=power_terms;
data power; set power_terms;
alpha=0.05;
ncparm=numdf*Fvalue;
F_critical=finv(1-alpha, numdf, dendf, 0);
power=1-probf(F_critical, numdf, dendf, ncparm);
proc print; run;

SAS output

The output below is abbreviated by eliminating all the proc glimmix output, which 
is necessary only for the purpose of checking the SAS run for errors.  The output 
below is the result of the "proc print" statement at the end of the SAS code, printing 
all the calculated parameter estimates for the six design scenarios, shown under the 
headings "group1" (number of sampling units) and "group2" (number of replicates).
                              Num

Obs group1 group2 Effect DF DenDF FValue ProbF alpha ncparm F_critical power

1 2 4 trt 1 6 5.00 0.0667 0.05 5.00 5.98738 0.46741

2 2 5 trt 1 8 6.25 0.0369 0.05 6.25 5.31766 0.59308

3 2 6 trt 1 10 7.50 0.0209 0.05 7.50 4.96460 0.69494

4 3 4 trt 1 6 6.00 0.0498 0.05 6.00 5.98738 0.53734

5 3 5 trt 1 8 7.50 0.0255 0.05 7.50 5.31766 0.67085

6 3 6 trt 1 10 9.00 0.0133 0.05 9.00 4.96460 0.77140
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Results and Conclusions

 The output allows direct comparisons of designs that are both statistically and lo-
gistically efficient.  It shows that there are multiple ways to achieve an expected level 
of power, e.g. r = 6 replicates and s = 2 sampling units is roughly equivalent to r = 5 
replicates and s = 3 sampling units.  The results can be expanded to a wider range of 
values and used to graphically display the design comparisons as shown in Figure 2, 
in which r = 3 to 20 and s = 3 to 20.

EXERCISE #3. 
Solution: 

The exercise is similar to Exercise #2, but the design differs, providing another illus-
tration for conducting power analyses.

Example

The experiments described in Casler (1998; 2013) were used to obtain the following 
estimates of random factors: blocks (0), treatment ´ location interaction (0.02), and re-
sidual variance (2.0).  Power was predicted for a randomized complete block design, 
but the random block effect was assumed to be zero, based on previous estimates 
from (Casler, 1998).  The desired detection limit was set to 5%, with representative 
treatment means of 9.5 and 10 with a Type 1 error rate of a = 0.05.

SAS code

 The SAS code below computes the expected power for the design described above 
for 25 variations of the numbers of replicates per location and number of locations.  
It first creates a macro entitled "two".  The macro then creates two new variables: 
"locn" is the number of locations and "repl" is the number of replicates.  These two 
values are allowed to vary with maxima of "locmax" and "repmax", respectively.  The 
line that reads "%two(6,8)" is the place to set the upper limits for the investigation.  
In this example, we have chosen to vary the number of replicates from 4 to 8 and 
the number of locations from 2 to 6.  The remainder of the code is similar to that in 
Examples #1 and 2.
options nocenter;
%macro two(locmax,repmax);
data a;
%do locn=2 %to &locmax;
group1=&locn;
%do repl=4 %to &repmax;
group2=&repl;
do loc=1 to &locn by 1;
do rep=1 to &repl by 1;
do trt=0 to 1 by 1;
output;
end;
end;
end;
%end;
%end;
%mend two;
%two(6,8);          /*   <--- change here     */
run;
proc sort; by group1 group2;
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data b; set a; by group1 group2;
if trt=0 then y=9.5;
if trt=1 then y=10;
run;
proc glimmix; class loc trt rep; by group1 group2;
model y = trt;
random trt*loc;
parms (0.02)(0.2) / hold=1,2;
ods output tests3=power_terms;
data power;
set power_terms;
alpha=0.05;
ncparm=numdf*Fvalue;
F_critical=finv(1-alpha, numdf, dendf, 0);
power=1-probf(F_critical, numdf, dendf, ncparm);
proc print;
run;

SAS output

 The output below is abbreviated by eliminating all the proc glimmix output, which 
is necessary only for the purpose of checking the SAS run for errors.  The output below is 
the result of the "proc print" statement at the end of the SAS code, printing all the calcu-
lated parameter estimates for the six design scenarios, shown under the headings "group1" 
(number of locations) and "group2" (number of replicates).

Obs group1 group2 Effect DF DenDF FValue ProbF alpha ncparm F_critical  power

1 2 4 trt 1 2 3.57 0.1994 0.05 3.5714 18.5128 0.20180
2 2 5 trt 1 2 4.17 0.1780 0.05 4.1667 18.5128 0.22463
3 2 6 trt 1 2 4.69 0.1628 0.05 4.6875 18.5128 0.24407
4 2 7 trt 1 2 5.15 0.1514 0.05 5.1471 18.5128 0.26082
5 2 8 trt 1 2 5.56 0.1425 0.05 5.5556 18.5128 0.27539
6 3 4 trt 1 4 5.36 0.0816 0.05 5.3571 7.7086 0.42377
7 3 5 trt 1 4 6.25 0.0668 0.05 6.2500 7.7086 0.47726
8 3 6 trt 1 4 7.03 0.0569 0.05 7.0312 7.7086 0.52112
9 3 7 trt 1 4 7.72 0.0499 0.05 7.7206 7.7086 0.55749
10 3 8 trt 1 4 8.33 0.0447 0.05 8.3333 7.7086 0.58799
11 4 4 trt 1 6 7.14 0.0369 0.05 7.1429 5.9874 0.60896
12 4 5 trt 1 6 8.33 0.0278 0.05 8.3333 5.9874 0.67420
13 4 6 trt 1 6 9.37 0.0222 0.05 9.3750 5.9874 0.72379
14 4 7 trt 1 6 10.29 0.0184 0.05 10.2941 5.9874 0.76214
15 4 8 trt 1 6 11.11 0.0157 0.05 11.1111 5.9874 0.79231
16 5 4 trt 1 8 8.93 0.0174 0.05 8.9286 5.3177 0.74472
17 5 5 trt 1 8 10.42 0.0121 0.05 10.4167 5.3177 0.80635
18 5 6 trt 1 8 11.72 0.0090 0.05 11.7187 5.3177 0.84922
19 5 7 trt 1 8 12.87 0.0071 0.05 12.8676 5.3177 0.87980
20 5 8 trt 1 8 13.89 0.0058 0.05 13.8889 5.3177 0.90214
21 6 4 trt 1 10 10.71 0.0084 0.05 10.7143 4.9646 0.83824
22 6 5 trt 1 10 12.50 0.0054 0.05 12.5000 4.9646 0.88893
23 6 6 trt 1 10 14.06 0.0038 0.05 14.0625 4.9646 0.92097
24 6 7 trt 1 10 15.44 0.0028 0.05 15.4412 4.9646 0.94192
25 6 8 trt 1 10 16.67 0.0022 0.05 16.6667 4.9646 0.95608

Results and Conclusions
 The output allows any researcher to make direct comparisons of designs that are 
both statistically and logistically efficient.  The results can be expanded to a wider 
range of values and used to graphically display the design comparisons as shown in 
Figure 2 for l = 2 to 6 locations and r = 4 to 20 replicates.
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Chapter 5: Multiple Comparison 
Procedures: The Ins and Outs

David J. Saville

Solutions

Exercise 1

Each of the main effect means for the “within row spacing” factor is an average of 
12 data values, so each has an effective sample size of n = 12.    The LSD(5%) which is 
appropriate for comparing the two main effect means is therefore

LSD(5%)   =   2.131 x √[2 x 853,113 / 12]   =   804

where 2.131 is the two-sided 5% critical value for the t distribution with the residual 
degrees of freedom (15) (this critical value for t15  can also be calculated in Excel by 
typing the formula “=tinv(0.05,15)” into any cell), and 853,113 is the residual mean 
square (which is also the “pooled variance estimate”).

Exercise 2.  

(a)  When sorted into descending order, the treatment means are 7604, 7493, 6150, 
5679, 4838 and 4192.  We now search for “homogeneous” groups of means, and as-
sign a letter to each such group.

We start our search with the largest mean, 7604.   The second largest mean, 
7493, differs from 7604 by only 111, which is less than the least significant difference 
(LSD(5%)=1392), so the two means do not differ significantly, so we include this mean 
of 7493 in a homogeneous group along with the first mean of 7604. The third largest 
mean, 6150, however, differs from 7604 by 1454, which is greater than the LSD(5%) of 
1392, so the two means differ significantly, so we cannot include this mean of 6150 in 
a homogeneous group along with the first two means. Therefore our first homoge-
neous group consists of just the first two means, 7604 and 7493. To indicate this result, 
we assign the letter “a” to each of these means.

We now continue our search for homogeneous groups by forgetting about the 
largest mean, and examining the second largest mean, 7493, in relation to the 
remaining four means. Now the third largest mean, 6150, differs from 7493 by 1343, 
which is less than the LSD(5%) of 1392, so the two means do not differ significantly, 
so we include this mean of 6150 in a homogeneous group along with the mean of 
7493. The fourth largest mean, 5679, however, differs from 7493 by 1814, which is 
greater than the LSD(5%) of 1392, so the two means differ significantly, so we cannot 
include this mean of 5679 in a homogeneous group along with the other two means. 
Therefore our second homogeneous group consists of just two means, 7493 and 6150. 
To indicate this result, we assign the letter “b” to each of these means.

Continuing our search, we forget about the two largest means, and exam-
ine the third largest mean, 6150, in relation to the remaining three means.   The 
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fourth largest mean, 5679, differs from 6150 by 471, which is less than the LSD(5%) 
of 1392, so the two means do not differ significantly, so we include this mean 
of 5679 in a homogeneous group along with the mean of 6150. The fifth largest 
mean, 4838, differs from 6150 by 1312, which is also less than the LSD(5%) of 1392, 
so the two means do not differ significantly, so we also include this mean of 4838 in 
a homogeneous group along with the other two means. The sixth largest mean, 4192, 
however, differs from 6150 by 1958, which is greater than the LSD(5%) of 1392, so 
the two means differ significantly, so we cannot include this mean of 4192 in a 
homogeneous group along with the other three means. Therefore our third homo-
geneous group consists of three means, 6150, 5679 and 4838. To indicate this result, 
we assign the letter “c” to each of these three means.

Continuing our search, we forget about the three largest means, and examine 
the fourth largest mean, 5679, in relation to the remaining two means.  The fifth larg-
est mean, 4838, differs from 5679 by 841, which is less than the LSD(5%) of 1392, 
so the two means do not differ significantly, so we include the mean of 4838 in 
a homogeneous group along with the mean of 5679. The sixth largest mean, 4192, 
however, differs from 5679 by 1487, which is greater than the LSD(5%) of 1392, so 
the two means differ significantly, so we cannot include the mean of 4192 in a 
homogeneous group along with the other two means. Therefore our fourth homo-
geneous group consists of two means, 5679 and 4838. We notice, however, that this 
fourth homogeneous group is included in the third homogeneous group (assigned 
the letter “c”), so we do not declare a fourth homogeneous group, and do not 
assign any more letters to these two means.

To complete our search, we compare the fifth largest mean, 4838, to the only 
remaining mean, 4192. These means differ by 646, which is less than the LSD(5%) of 
1392, so the two means do not differ significantly, so we include the mean of 4192 in 
a homogeneous group along with the mean of 4838. Therefore our fourth homoge-
neous group consists of two means, 4838 and 4192. To indicate this result, we assign 
the letter “d” to each of these three means.
This completes the process. The final result, in terms of the sorted means, is: 

7604		 a
7493		 ab
6150		 bc
5679		 c
4838	 cd
4192		 d

When re-sorted into the order of the treatments, this gives the same lettering as 
shown in Table 2.

Aside: In this example, the six treatments were equally replicated, so a single 
LSD(5%) could be used for comparing all pairs of treatment means. The above pro-
cedure can then be easily performed by computer.   However, if the treatments had 
been unequally replicated, several different LSD(5%) values would have been 
required and the procedure is more complicated, with the result that attempts at 
generating an appropriate computer routine are not universally successful.

(b) For the within-row spacing of 5 cm, yes, there is a 5% significant differ-
ence between the “3 rows per bed” treatment mean (6150) and the “5 rows per bed” 



564 Appendix A 

treatment mean (7604), since they do not have a letter in common (which reflects the 
fact that they differ by 1454, which is greater than the LSD(5%) of 1392). Similarly, for 
the within-row spacing of 10 cm, yes, there is a 5% significant difference between the 
“3 rows per bed” treatment mean (4192) and the “5 rows per bed” treatment mean 
(5679), since they do not have a letter in common (which reflects the fact that they 
differ by 1487, which is greater than the LSD(5%) of 1392).

For each within-row spacing (5 cm and 10 cm), no, there is no significant dif-
ference between the “4 rows per bed” treatment mean and either the “3 rows per 
bed” or “5 rows per bed” treatment means, since for all four pairwise comparisons 
the two means being compared have a letter in common (which reflects the fact that 
the two means always differ by less than the LSD(5%) of 1392).

(c)  For  each  between-row  spacing  (3,  4,  and  5  rows  per  bed),  yes,  there  is  a  
5% significant difference between the “5 cm” treatment mean and the “10 cm” treat-
ment mean?  For example, the two “3 rows per bed” treatment means are 6150 and 4192 
for 5 cm and 10 cm spacing, respectively, and these means differ significantly since 
they do not have a letter in common (which reflects the fact that they differ by 1958, 
which is greater than the LSD(5%) of 1392).  For “4 rows per bed” the respective means 
again do not have a letter in common, and differ by 2655 (>1392). For “5 rows per bed” 
the respective means also do not have a letter in common, and differ by 1925 (>1392).
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Chapter 6: Linear Regression 
Techniques

Christel Richter and Hans-Peter Piepho

Appendix 1 (Refers to Example 1: Datafile EEL with variables 
LENGTH and WEIGHT)

Grey: Externally Studentized residuals with **ˆ 2ie > . Framed: high leverage

Eel_no Length (cm) Weight (g) Eel_no Length (cm) Weight (g)

1 33 108.6 18 46 184.8
2 34 114.1 19 46 191.8
3 36 120.4 20 46 189.7
4 36 128.6 21 47 202.6
5 37 137.5 22 47 198.9
6 39 144.2 23 47 198.2
7 39 148.3 24 48 209.6
8 40 152.4 25 49 212.1
9 41 160.5 26 51 224.5
10 42 166.4 27 51 224.7
11 42 165.9 28 51 228.3
12 42 162.8 29 51 221.6
13 43 179.0 30 52 231.7
14 43 172.1 31 53 246.2
15 44 178.0 32 54 247.5
16 45 189.7 33 55 254.8
17 46 194.9 34 58 275.0

DATA eel;
SET eel;
LABEL length='Length [cm]' weight='Weight [g]'; 
RUN; 

ODS GRAPHICS ON;

TITLE 'Example 1: Generation of a template for Figure 1';
PROC TEMPLATE; 
DEFINE STATGRAPH eel_temp;
BEGINGRAPH; 
ENTRYTITLE "Weight and length of eels" /TEXTATTRS=(SIZE=11pt); 
LAYOUT lattice/COLUMNS = 2 ROWS = 2 COLUMNWEIGHTS = (.8 .2) ROWWEIGHTS 
= (.8 .2)
COLUMNDATARANGE = union ROWDATARANGE = union;
COLUMNAXES;
COLUMNAXIS /LABEL = "Length [cm]" GRIDDISPLAY = on 
LABELATTRS=(SIZE=12)TICKVALUEATTRS=(SIZE=10);
COLUMNAXIS /LABEL = "" GRIDDISPLAY = on;
ENDCOLUMNAXES;
ROWAXES;
ROWAXIS /LABEL = "Weight [g]" GRIDDISPLAY = on LABELATTRS=(SIZE=12) 
TICKVALUEATTRS=(SIZE=10);
ROWAXIS /LABEL = "" GRIDDISPLAY = on;
ENDROWAXES;
LAYOUT overlay;
SCATTERplot X = length Y = weight/MARKERATTRS=(COLOR=black SIZE=10 
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SYMBOL=circlefilled);
ENDLAYOUT;
BOXPLOT Y=weight/ORIENT = vertical;
BOXPLOT Y=length/ORIENT = horizontal;
ENDLAYOUT;
ENDGRAPH;
END;
RUN;
TITLE 'Example 1: Figure 1';
PROC SGRENDER DATA = eel TEMPLATE = eel_temp; 
RUN; QUIT;

TITLE 'Example 1: Regression with Figure 3 and some further 
representations with PROC REG'; 
PROC REG DATA=eel PLOTS(LABEL)=all; 
MODEL weight = length /CLB;
OUTPUT OUT=eel_out P=yhat LCLM=lclm UCLM=uclm LCL=lcl UCL=ucl R=yresid 
STUDENT=student RSTUDENT=rstudent H=h COOKD=cookd COVRATIO=covratio 
DFFITS=dffits PRESS=PRESS;
RUN; QUIT;

TITLE 'Example 1: Regression with PROC MIXED'; 
PROC MIXED DATA=eel plots=all; 
MODEL weight = length /s CL outp=eel_out_mixed;
RUN; QUIT;

TITLE 'Example 1: Regression with PROC GLM'; 
PROC GLM DATA=eel plots=all; 
MODEL weight = length /SOLUTION CLPARM ;
OUTPUT OUT=eel_out_glm P=yhat LCLM=lclm UCLM=uclm LCL=lcl UCL=ucl 
R=yresid STUDENT=student RSTUDENT=rstudent H=h COOKD=cookd 
COVRATIO=covratio DFFITS=dffits PRESS=PRESS;
RUN; QUIT;

TITLE 'Example 1: Figure 4 Confidence ellipse'; 
PROC CORR DATA=eel PLOTS=SCATTER(ellipse=confidence alpha= 0.05);
VAR length weight;
RUN; QUIT;

TITLE 'Example 1: Figure 4 Prediction ellipse'; 
PROC CORR DATA=eel PLOTS=SCATTER(alpha= 0.05);
VAR length weight;
RUN; QUIT;

TITLE 'Example 1: Figure 6 and tests for normality'; 
PROC UNIVARIATE DATA= eel_out NORMAL; 
QQPLOT student/NORMAL (MU=0 SIGMA=1) ODSTITLE='Q-Q Plot for Eel_
Weight';
VAR student;
RUN; QUIT;

TITLE 'Example 1: Figure 7'; 
DATA eel_out;
SET eel_out; IF student<-2 OR student>2 THEN studcrit="S obs.
no.="||trim(left(_N_)); 
IF studcrit ne '     ' THEN crit =length;
RUN; QUIT;

PROC SGPLOT DATA= eel_out NOAUTOLEGEND;
TITLE 'Internally studentized residual against length';
SCATTER X=length Y=student;REFLINE 0 2 -2;
SCATTER X=crit Y=student/ DATALABEL=studcrit 
DATALABELATTRS=(Family=Arial SIZE=10 
STYLE=Italic Weight=Bold) MARKERATTRS=(COLOR=black SIZE=8 
SYMBOL=circlefilled);
REFLINE 0 2 -2;
RUN; QUIT;
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Appendix 2 (Refers to Example 2: Datafile CALIBRATION with 
variables C and EXT)

Grey: Externally Studentized residuals with **ˆ 2ie > . No high leverage.

Obs_no Concentration (mmol/l) Extinction

1 0.5 55.5
2 1.0 77.0
3 1.5 100.7
4 3.0 165.5
5 5.0 253.4

Regression analysis and Fig. 3 analogous to PROC REG of Example 1; for Fig. 2, the 
Template of Example 1 must be adjusted (among others: boxplot only for the extinction)
TITLE 'Example 2: Generation of concentration values as initial 
values for the iteration'; 
DATA cali_start;
DO start=4.3 TO 4.6 BY 0.01;
OUTPUT; END; 
RUN; QUIT;

TITLE 'Example 2: Iterative solution for CL and CU'; 
/*rootMSE and regression function from PROC REG; Cmean and SSC 
from PROC UNIVARIATE*/
PROC MODEL DATA=cali_start OUT=result;
rootMSE=0.7320449; n=5; Cmean=2.2; SSC=13.3; ext=230;
EXT1=33.70602+43.9609*CL; /*regression function*/
EXT2=33.70602+43.9609*CU; /*regression function*/
eq.CL=EXT2- rootMSE *sqrt(1+1/n+(CL- Cmean)**2/
SSC)*tinv(0.975,n-2)-ext;
eq.CU=EXT1+ rootMSE *sqrt(1+1/n+(CU- Cmean)**2/
SSC)*tinv(0.975,n-2)-ext;
SOLVE CL CU;
RUN; QUIT;

Appendix 3 (Refers to Example 3 and Example 3 (modfied): 
Datafile FIBER with variables DAY, CONTENT, and BLOCK)

Grey: Externally Studentized residuals with 
**ˆ 2ie > . No high leverage

No. 
obs. Day Crude fiber content (g/kg) Block No. 

obs. Day Crude fiber content (g/kg) Block

1 0 218 1 11 10 289 3

2 0 225 2 12 10 297 4

3 0 229 3 13 15 297 1

4 0 239 4 14 15 307 2

5 5 246 1 15 15 317 3

6 5 258 2 16 15 343 4

7 5 254 3 17 20 316 1

8 5 269 4 18 20 336 2

9 10 257 1 19 20 354 3

10 10 275 2 20 20 351 4
For Fig. 2, the Template of Example 1 must be adjusted; Fig. 3, 6, and 7, Table 2 A and 
D analogous to the code of Example 1
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DATA fiber;
SET fiber;
LABEL content='Fiber Content [g/kg]' Day='Days after the first 
cut'; 
RUN; QUIT;

TITLE 'Example 3: Table 2 B'; 
PROC REG DATA=fiber;
MODEL content=day / lackfit; 
RUN; QUIT;

TITLE 'Example 3: Remark to explain the lack-of-fit'; 
DATA fiber;
SET fiber;
day2=day*day; day3=day2*day; day4=day2*day2;
RUN; QUIT;
PROC REG DATA=fiber;
MODEL content=day day2 day3 day4/lackfit ss1; 
RUN; QUIT;

TITLE 'Example 3: Table 2 C with PROC GLM'; 
PROC GLM DATA=fiber;
CLASS day;
MODEL content=day;
RUN; QUIT;

TITLE 'Example 3: Table 2 C with PROC MIXED'; 
PROC MIXED DATA=fiber;
CLASS day;
MODEL content=day;
RUN; QUIT;

TITLE 'Example 3: Calculation of the means per day'; 
PROC MEANS DATA=fiber; 
CLASS day;
VAR content; 
OUTPUT OUT=fiber_mean_file MEAN=content_mean; 
RUN; QUIT;

TITLE 'Example 3: Table 3'; 
PROC REG DATA=fiber_mean_file;
MODEL content_mean = day;
OUTPUT OUT=fiber_mean_out P=yhat STDP=stdp LCLM=lclmean UCLM=uclmean  
STDR=stdr STDI=stdi LCL=lclind UCL=uclind;
RUN; QUIT;

TITLE 'Example 3 (modified): Table 18 A'; 
PROC GLM data=fiber;
CLASS block;
MODEL content =day block;
RUN; QUIT;

TITLE 'Example 3 (modified): Table 18 B'; 
PROC MIXED DATA=fiber;
/*Estimated function values and confidence intervals per fixed block are 
given in fiber_fix*/
CLASS block;
MODEL content = day block /S CL OUTP=fiber_fix;
ESTIMATE 'b0+block1' int 1 block 1 /cl;
ESTIMATE 'b0+block2' int 1 block 0 1/cl;
ESTIMATE 'b0+block3' int 1 block 0 0 1/cl;
ESTIMATE 'b0+block4' int 1 block 0 0 0 1/cl;
RUN; QUIT;

TITLE 'Example 3 (modified): Table 19 and Table 20 (broad inference'; 
PROC MIXED DATA=fiber;
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/*Confidence intervals (broad inference) are given in fiber_rand*/
CLASS block;
MODEL content =day /S CL ddfm=Kenwardroger(firstorder) OUTPM=fiber_rand;
RANDOM block /S; 
RUN; QUIT;

TITLE 'Example 3 (modified): Table 20'; 
/*To have a common divisor all values in the estimate statement are 
multiplied with 4 = number of blocks*/
PROC MIXED DATA=fiber;
/*Calculation of confidence intervals for the mean of all fixed blocks*/
CLASS block;
MODEL content =day block /S CL;
ESTIMATE 'day0'   int 4 block 1 1 1 1 day  0/divisor=4 cl;
ESTIMATE 'day5'   int 4 block 1 1 1 1 day 20/divisor=4 cl;
ESTIMATE 'day10'  int 4 block 1 1 1 1 day 40/divisor=4 cl;
ESTIMATE 'day15'  int 4 block 1 1 1 1 day 60/divisor=4 cl;
ESTIMATE 'day20'  int 4 block 1 1 1 1 day 80/divisor=4 cl;
RUN; QUIT;

TITLE 'Example 3 (modified): Table 20'; 
PROC MIXED DATA=fiber;
/*Calculation of confidence intervals for the mean of all random 
blocks*/
CLASS block;
MODEL content =day /S CL ddfm=Kenwardroger(firstorder);
RANDOM block /S; 
ESTIMATE 'day0'  int 4 day 0  | block 1 1 1 1 /divisor=4 cl;
ESTIMATE 'day5'  int 4 day 20 | block 1 1 1 1 /divisor=4 cl;
ESTIMATE 'day10' int 4 day 40 | block 1 1 1 1 /divisor=4 cl;
ESTIMATE 'day15' int 4 day 60 | block 1 1 1 1 /divisor=4 cl;
ESTIMATE 'day20' int 4 day 80 | block 1 1 1 1 /divisor=4 cl;
RUN; QUIT;

Appendix 4 (Refers to Example 4: Datafile GRASS with variables 
WGRASS and YIELD)

Grey: Externally Studentized residuals with **ˆ 2ie > . Framed: high leverage

No.
Obs. Rxi

Wind grass
(number/m2)

xi

yield
( g / plot )
yi

Ryi
No.
Obs. Rxi

Wind grass
(number/m2)

xi

yield
( g / plot )

yi

Ryi

1 1.5 0 9310 48 27 27.5 99 6410 23
2 1.5 0 8460 43 28 27.5 99 6640 25.5
3 4 1 9770 52 29 29 100 6010 19
4 4 1 9320 49 30 30 101 6940 28
5 4 1 8620 44 31 31.5 102 4930 14
6 6 2 7850 36.5 32 31.5 102 7620 33
7 7.5 3 9520 51 33 33.5 132 5680 17
8 7.5 3 9080 46 34 33.5 132 7570 32
9 9 4 6340 22 35 35 145 5240 16
10 10 5 9340 50 36 36 152 6320 21
11 11 17 7940 39 37 37 161 3970 9
12 12 21 8730 45 38 38 167 4790 13
13 13 22 7870 38 39 39 197 5230 15
14 14 24 8160 41 40 40 243 5980 18
15 15 31 7700 35 41 41 250 7240 29
16 16 37 8120 40 42 42 251 2340 5
17 17 46 7850 36.5 43 43 258 4320 12
18 18 51 7530 31 44 44 268 2830 6
19 19.5 56 7630 34 45 45 288 3810 8
20 19.5 56 9120 47 46 46 305 4260 11
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21 21.5 57 6640 25.5 47 47 311 4130 10
22 21.5 57 7490 30 48 48 337 3050 7
23 23 61 6280 20 49 49 901 1740 2
24 24 81 8450 42 50 50 927 1750 3
25 25 84 6920 27 51 51 1102 1980 4
26 26 88 6550 24 52 52 1204 540 1

For Fig. 2, the Template of Example 1 must be adjusted; for Fig. 3, 6, and 7 the code of 
Example 1 can be used
DATA grass;
SET grass; sqrt_wgrass=sqrt(wgrass); log_yield=log(yield);
LABEL wgrass='wind grass [number/plot]' yield='Yield [g/plot]'
sqrt_wgrass='sqrt(wind grass)';
RUN; QUIT;

TITLE 'Example 4: Spearman's correlation coefficient';
PROC CORR DATA=grass SPEARMAN;
VAR wgrass yield;
RUN; QUIT;

TITLE 'Example 4: Regression with logarithm of yield 
(multiplicative errors after back-transformation)'; 
PROC REG DATA=grass; 
MODEL log_yield=wgrass;
RUN; QUIT;

TITLE 'Example 4: Non-linear regression yield=a*exp(b*wgrass) 
with additive errors'; 
PROC NLIN DATA=grass PLOTS=all;
PARMS  a=8000 b=-0.01;
MODEL yield=a*exp(b*wgrass);
RUN; QUIT;

TITLE 'Example 4: Non-linear regression 
yield=a*exp(b*wgrass)+c with additive errors and Fig. 8'; 
PROC NLIN DATA=grass PLOTS=all;
PARMS a=7000 b=-0.01 c=1200;
MODEL yield=a*exp(b*wgrass)+c;
RUN; QUIT;

Appendix 5 (Refers to Example 5: Datafile SHAPE with input 
variables x1, x2, BLOCK, and YIELD)
TITLE 'Example 5: DATA input and calculation of the variables 
TREATMENT, AREA, SHAPE_INDEX1, and SHAPE_INDEX2';
DATA space;
INPUT x1 x2 @@; treatment=x1*1000+x2; area=x1*x2;
shape_ind1=x1/x2; shape_ind2=(x1+x2)/2/sqrt(x1*x2); 
DO block=1 TO 4; INPUT yield@@; OUTPUT; END;
DATALINES;
30 30 5.95 5.30 6.50 6.35
30 24 7.10 6.45 6.60 5.75
30 20 7.00 6.50 6.35 8.90
30 15 8.10 5.50 6.60 7.50
24 24 8.85 7.65 7.00 7.90
24 20 7.65 6.90 8.25 8.30
24 15 7.80 6.75 8.20 7.25
20 20 8.05 6.65 8.10 8.05
20 15 9.30 8.75 8.75 8.00
15 15 9.35 8.10 7.60 7.75
;TITLE 'Example 5: Table 6 A TO D';
PROC GLM DATA=space;
CLASS block treatment;
MODEL yield =block treatment;
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RUN; QUIT;

PROC GLM DATA=space;
CLASS block treatment;
MODEL yield =block area treatment / SS1;
RUN; QUIT;

PROC GLM DATA=space;
CLASS block treatment;
MODEL yield =block area shape_ind1 treatment / SS1;
RUN; QUIT;
PROC GLM DATA=space;
CLASS block treatment;
MODEL yield =block area shape_ind2 treatment / SS1;
RUN; QUIT;

TITLE 'Example 5: Table 7';
PROC GLM DATA=space;
CLASS block;
MODEL yield =block area / SS1;
OUTPUT OUT=residual_B r=resi_B;
RUN; QUIT;

PROC GLM DATA=space;
CLASS block;
MODEL yield =block area shape_ind1 / SS1;
OUTPUT OUT=residual_C r=resi_C;
RUN; QUIT;

PROC GLM DATA=space;
CLASS block;
MODEL yield =block area shape_ind2 / SS1;
OUTPUT OUT=residual_D r=resi_D;
RUN; QUIT;

PROC SORT DATA= residual_B; BY treatment block; RUN;
PROC SORT DATA= residual_C; BY treatment block; RUN;
PROC SORT DATA= residual_D; BY treatment block; RUN;

DATA resi;
MERGE residual_B residual_C residual_D; BY treatment block;
KEEP treatment block yield resi_B resi_C resi_D;
RUN; QUIT;

PROC MEANS DATA=resi;
VAR yield resi_B resi_C resi_D; 
BY treatment;
OUTPUT OUT=mwresi MEAN= mwyield mwresi_B mwresi_C mwresi_D;
RUN; QUIT;

Appendix 6 (Refers to Example 6: Datafile POTATO with 
variables SIZE and WEIGHT). 

The datafile Potato.xls is available in the supplemental material.
DATA potato; 
SET potato;
size2=size*size; size3=size*size*size; 
size_reciprocal = 1/size;
label size='Size [mm]' weight='Weight [g]';
RUN; QUIT;

TITLE 'Example 6: Table 8 A and B';
/* Sequential approach with sequence x1→ x2 → x3; partially also 
with PROC REG (with option ss1) and PROC MIXED (with option htype=1) 
possible*/
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PROC GLM DATA= potato;
MODEL weight = size size2 size3 /SOLUTION SS1;
RUN; QUIT;
/* Sequential approach with sequence x3→ x1 → x2*/
PROC GLM DATA= potato;
MODEL weight =size3 size size2 / SOLUTION SS1;
RUN; QUIT;
/* Partial approach does not depend on the sequence*/
PROC GLM DATA= potato;
MODEL weight =size size2 size3 / SOLUTION ;
RUN; QUIT;

TITLE 'Example 6: Table 8 C';
/*pcorr2 bases on the partial approach, pcorr1 on the sequential 
approach*/
PROC REG DATA=potato;
MODEL weight =size size2 size3/ PCORR2 TOL;
RUN; QUIT;

TITLE 'Example 6: Table 9 A';
/*m123... m3 are labels for the different models with intercepts. The 
fit criteria are in the potato_info_int file*/
PROC REG DATA= potato OUTEST= potato_info_int;
m123: MODEL weight = size size2 size3 / ADJRSQ AIC PRESS BIC SBC SSE;
m12:  MODEL weight = size size2 / ADJRSQ AIC PRESS BIC SBC SSE;
m13:  MODEL weight = size size3 / ADJRSQ AIC PRESS BIC SBC SSE;
m23:  MODEL weight = size2 size3 / ADJRSQ AIC PRESS BIC SBC SSE;
m1:   MODEL weight = size / ADJRSQ AIC PRESS BIC SBC SSE;
m2:   MODEL weight = size2 / ADJRSQ AIC PRESS BIC SBC SSE;
m3:   MODEL weight = size3 / ADJRSQ AIC PRESS BIC SBC SSE;
RUN; QUIT;

TITLE 'Example 6: Table 9 B';
/*m123... m3 are labels for the different models without 
intercepts. The fit criteria are in the potato_info_noint file*/
PROC REG DATA= potato OUTEST= potato_info_noint;
m123: MODEL weight = size size2 size3 / NOINT ADJRSQ AIC PRESS 
BIC SBC SSE;
m12:  MODEL weight = size size2 / NOINT ADJRSQ AIC PRESS BIC 
SBC SSE;
m13:  MODEL weight = size size3 / NOINT ADJRSQ AIC PRESS BIC 
SBC SSE;
m23:  MODEL weight = size2 size3 / NOINT ADJRSQ AIC PRESS BIC 
SBC SSE;
m1:   MODEL weight = size / NOINT ADJRSQ AIC PRESS BIC SBC SSE;
m2:   MODEL weight = size2 / NOINT ADJRSQ AIC PRESS BIC SBC SSE;
m3:   MODEL weight = size3 / NOINT ADJRSQ AIC PRESS BIC SBC SSE;
RUN; QUIT;

TITLE 'Example 6: Table 12';
/*first step: PROC TRANSREG to get the LLtransreg-values*/
/*with log(size) as regressor and using lambda=0 */
PROC TRANSREG details DATA= potato PLOTS=all SS2 PBOXCOXTABLE 
CL;
MODEL BOXCOX(weight /  LAMBDA=0 ) = log(size);
RUN; QUIT;

/*with log(size) as regressor and searching for the optimal 
lambda */
PROC TRANSREG details DATA= potato PLOTS=all SS2 PBOXCOXTABLE 
CL;
MODEL BOXCOX(weight /  LAMBDA=0 to 1 by 0.01 ) = log(size);
RUN; QUIT;

/*with size as regressor and using lambda=1/3 if it is in 
confidence interval of the optimal lambda*/
PROC TRANSREG details DATA= potato PLOTS=all SS2 PBOXCOXTABLE CL;
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MODEL BOXCOX (weight / CONVENIENT CLL =0.333333 lambda=0.3 TO 0.4 by 
0.001) = IDENTITY(size);
RUN; QUIT;

/*second step: Calculation of -2LL=LLnew in Table 12 using the 
LLtransreg-values of PROC TRANSREG; for the first row in Table 
12: -1166.3, for the second row: -1157.06, and for the third row: 
-1159.38*/
DATA calc;
LLtransreg=-1166.3; 
n=524; PI=constant('PI'); LLnew=-2*(LLtransreg-n/2*log(2*PI)-(n-2)/2); 
PROC PRINT DATA=calc; 
RUN; QUIT;

/*for the fourth row in Table 12; with size3 as regressor, no 
transformation*/
PROC MIXED data=potato method=ML;
MODEL weight=size3;
run;quit;

TITLE 'Example 6: Table 14';
/*For using the ML-method, replace method = REML (default) with method 
= ML */
/*Weighted regression with 1/size*/
PROC MIXED DATA=potato METHOD=REML PLOTS=all;
MODEL weight = size3 /NOINT S CL DDFM=KenwardRoger(firstorder);
WEIGHT size_reciprocal;
RUN; QUIT;

/*Power-of-x model; due to convergence problems, initial values for 
the covariance parameters are specified*/
PROC MIXED DATA=potato METHOD=REML PLOTS=all;
MODEL weight = size3 /NOINT S CL DDFM=KenwardRoger(firstorder);
REPEATED / LOCAL=exp(size);
PARMS (0.2) (1.5);
RUN; QUIT;

/*Power-of-mean model in two steps*/
ODS OUTPUT SolutionF=sf;
PROC MIXED DATA=potato;
MODEL weight = size3 /NOINT s;
RUN; QUIT;

PROC MIXED DATA=potato method=REML PLOTS=all;
MODEL weight = size3 /NOINT s;
REPEATED / LOCAL=pom(sf) DDFM=KenwardRoger(firstorder);
RUN; QUIT;

/*Model with individual variance per size; with Fig. 13 right*/
PROC MIXED DATA=potato METHOD=REML PLOTS=all;
MODEL weight = size3 / NOINT s DDFM=KenwardRoger(firstorder) 
OUTPM=potato_out_ind residual;
REPEATED / GROUP=size;
RUN; QUIT;

/*Fig. 13*/
PROC REG DATA= potato;
MODEL weight = size3 /NOINT;
OUTPUT OUT=potato_out P=yhat R=yresid STUDENT=student 
RSTUDENT=rstudent;
RUN; QUIT;

PROC SGPLOT DATA=potato_out;
TITLE 'Unweighted Regression';
LABEL size='size'; 
SCATTER x=size y=student;
RUN; QUIT;
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PROC SGPLOT DATA= potato_out_ind;
TITLE 'Regression with individual variance per size';
LABEL size='size' ; 
SCATTER x=size y=StudentResid;
RUN; QUIT;

Appendix 7 (Refers to Example 7: Datafile APPLE with variables 
VARIETY, YEAR1_4, and Year1_10)

Grey: Externally Studentized residuals with **ˆ 2ie > . Framed: high leverage
Variety A
Yield (kg/tree)

Variety B
Yield (kg/tree)

Year1_4 Year1_10 Year1_4 Year1_10 Year1_4 Year1_10 Year1_4 Year1_10

22 109 39 137 23 73 40 93
27 119 40 142 27 79 40 96
28 125 41 148 27 72 40 91
30 115 42 154 29 79 41 99
33 127 42 152 30 76 42 87
34 133 42 160 30 86 42 92
34 148 42 155 31 78 44 91
34 141 43 144 32 84 45 97
36 141 43 161 33 79 48 99
36 134 44 170 35 85 51 100
37 144 45 165 35 86 53 105
37 140 47 165 36 82 54 101
38 133 48 164 37 91 55 110
38 144 48 167 37 87 56 108
39 140 54 190 38 89 56 113

DATA apple;
SET apple;
LABEL year1_10='Yield [kg/tree] year 1 to 10' year1_4='Yield 
[kg/tree] year 1 to 4'; 
RUN; QUIT;

TITLE 'Example 7: Table 15';
/*Before running the following procedures, the datafile must be 
sorted by variety*/
PROC REG DATA=apple;
MODEL year1_10=year1_4 / CLB ADJRSQ;
BY variety;
OUTPUT OUT=apple_out P=yhat LCLM=lclmean UCLM=uclmean 
STDR=stdr STDI=stdi  LCL=lclind UCL=uclind;
RUN; QUIT;

TITLE 'Example 7: Fig. 14';
PROC SGPLOT DATA=apple;
TITLE 'Cumulative yield after 10 years against after 4 years';
REG x=year1_4 y=year1_10 /group=variety clm cli 
MARKERATTRS=(SIZE=9 SYMBOL=circle); 
XAXIS LABEL ="yield [kg/tree] year 1 to 4 " 
LABELATTRS=(SIZE=12)  VALUEATTRS=(SIZE=10); 
YAXIS LABELATTRS=(SIZE=12) VALUEATTRS=(SIZE=10) VALUES=(50  
100 150  200);
RUN; QUIT;

TITLE 'Example 7: Table 16 A';
PROC GLM DATA=apple; /*with PROC GLM*/
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MODEL year1_10=year1_4 /SOLUTION CLPARM;
RUN; QUIT;
PROC MIXED DATA=apple; /*alternatively with PROC MIXED*/
MODEL year1_10=year1_4 /S CL;
RUN; QUIT;

TITLE 'Example 7: Table 16 B';
PROC GLM DATA=apple;/*with PROC GLM*/
CLASS variety;
MODEL year1_10=year1_4 variety variety*year1_4 /SOLUTION CLPARM;
ESTIMATE 'int+b01' intercept 1 variety 1;
ESTIMATE 'int+b02' intercept 1 variety 0 1;
ESTIMATE 'b1+b11' year1_4 1 year1_4*variety 1;
ESTIMATE 'b1+b12' year1_4 1 year1_4*variety 0 1;
ESTIMATE 'b01-b02' variety 1 -1;
ESTIMATE 'b11-b12' year1_4*variety 1 -1;
RUN; QUIT;
PROC MIXED DATA=apple; /*alternatively with PROC MIXED*/
CLASS variety;
MODEL year1_10=year1_4 variety year1_4*variety /S CL;
ESTIMATE 'int+b01' int 1 variety 1 / CL;
ESTIMATE 'int+b02' int 1 variety 0 1 / CL;
ESTIMATE 'b1+b11' year1_4 1 year1_4*variety 1 / CL;
ESTIMATE 'b1+b12' year1_4 1 year1_4*variety 0 1 / CL;
ESTIMATE 'b01-b02' variety 1 -1 / CL;
ESTIMATE 'b11-b12' year1_4*variety 1 -1 / CL;
RUN; QUIT;

TITLE 'Example 7: Table 16 C';
PROC MIXED DATA=apple PLOT=all ;
CLASS variety;
MODEL year1_10= year1_4 year1_4*variety/S CL RESIDUAL OUTP=apple_
OUT_c_varhom;
ESTIMATE 'b1+b11' year1_4 1 year1_4*variety 1;
ESTIMATE 'b1+b12' year1_4 1 year1_4*variety 0 1;
RUN; QUIT;

TITLE 'Example 7: Table 17 A and B';
/*Variance Homogeneity*/
PROC MIXED DATA=apple plot=all ;
CLASS variety;
MODEL year1_10= year1_4 year1_4*variety/S CL RESIDUAL OUTP=apple_
out_c_varhom;
RUN; QUIT;
/*Variance Heterogeneity*/
PROC MIXED DATA=apple plot=all ;
CLASS variety;
MODEL year1_10= year1_4 year1_4*variety/S CL RESIDUAL OUTP=apple_
out_c_varhet;
REPEATED / GROUP=variety;
RUN; QUIT;

TITLE 'Example 7: Figure 15 upper part';
PROC SGPLOT DATA=apple NOAUTOLEGEND;
TITLE 'Cumulative yield after 10 years against after 4 years';
REG x=year1_4 y=year1_10 /clm cli; 
SCATTER x=year1_4 y=year1_10/ DATALABEL=variety 
DATALABELATTRS=(Family=Arial SIZE=10 STYLE=Italic WEIGHT=Bold) 
MARKERATTRS=(SIZE=7 SYMBOL=circlefilled); 
XAXIS LABEL ="yield [kg/tree] year 1 to 4 " LABELATTRS=(SIZE=12)  
VALUEATTRS=(SIZE=10);
YAXIS LABELATTRS=(SIZE=12) VALUEATTRS=(SIZE=10) VALUES=(50 100 150 
200);
RUN; QUIT;

TITLE 'Example 7: Figure 15 lower part left';
PROC SGPLOT DATA=Apple_out_c_varhom;
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TITLE 'Cumulative yield after 10 years against after 4 years';
SCATTER x = year1_4 y = year1_10 /GROUP=variety MARKERATTRS=(SIZE=9 
symbol=circle);
BAND x=year1_4 LOWER=LOWER UPPER=UPPER/GROUP=variety 
FILLATTRS=(TRANSPARENCY=0);
SERIES x=year1_4 y=pred/GROUP=variety LINEATTRS=(PATTERN=solid 
THICKNESS=2);
XAXIS LABEL ="yield [kg/tree] year 1 to 4 " LABELATTRS=(SIZE=12)  
VALUEATTRS=(SIZE=10);
YAXIS LABELATTRS=(SIZE=12) VALUEATTRS=(SIZE=10) VALUES=(50  100  150 
200);
RUN;QUIT;

TITLE 'Example 7: Figure 15 lower part right';
PROC SGPLOT DATA= apple_OUT_c_varhom NOAUTOLEGEND;
TITLE 'Externally Studentized residuals';
SCATTER x=pred y=studentresid/ DATALABEL=variety 
DATALABELATTRS=(Family=Arial SIZE=10 STYLE=Italic WEIGHT=Bold) 
MARKERATTRS=(SIZE=7 SYMBOL=circlefilled) ; REFLINE 0;
XAXIS LABEL ="PREDICTED value year 1 TO 10 " LABELATTRS=(SIZE=12)  
VALUEATTRS=(SIZE=10);
YAXIS LABELATTRS=(SIZE=12) VALUEATTRS=(SIZE=10) ;
RUN; QUIT;

Example 7, Figure 16 left and right analogous to Example 7, Figure 15 lower part with 
Datafile = apple_out_c_varhet

Appendix 8 (Refers to Example 8: Datafile AIRTEMP with 
variables TEMP and YEAR)

Grey: Externally Studentized residuals with 
**ˆ 2ie > . No high leverage.

Year Mean air temperature (oC) Year Mean air temperature (oC)

1960 8.94 1987 7.57
1961 9.35 1988 9.57
1962 7.98 1989 9.94
1963 7.79 1990 10.11
1964 8.42 1991 8.85
1965 8.02 1992 9.66
1966 8.93 1993 8.79
1967 9.50 1994 9.85
1968 8.65 1995 9.17
1969 7.78 1996 7.34
1970 7.93 1997 9.04
1971 8.89 1998 9.46
1972 8.16 1999 10.00
1973 8.53 2000 10.41
1974 9.46 2001 9.32
1975 9.47 2002 9.82
1976 8.51 2003 9.46
1977 9.05 2004 9.04
1978 8.20 2005 9.31
1979 8.00 2006 9.89
1980 7.56 2007 10.42
1981 8.42 2008 10.06
1982 9.42 2009 9.43
1983 9.48 2010 8.02
1984 8.58 2011 10.14
1985 8.00 2012 9.27
1986 8.27 2013 9.34
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TITLE 'Example 8: Table 21, Figure 17 and Durbin-Watson test';
PROC REG DATA=airtemp PLOTS (LABEL)=all;
ID Year; 
MODEL Temp=Year /DWPROB CLB CLI CLM ADJRSQ;
RUN; QUIT;

TITLE 'Example 8: Table 22';
PROC MIXED DATA=airtemp PLOTS=residualpanel(unpack) ;
MODEL Temp=Year /S CL DDFM=kr(firstorder);
REPEATED / TYPE=AR(1) SUBJECT=intercept;
RUN; QUIT;

TITLE 'Example 8: Analysis as AR(1)';
PROC AUTOREG DATA=airtemp /*AR(1) */; 
MODEL Temp=Year /NLAG=1 DW=1 DWPROB;
OUTPUT OUT=auto_ar1 P=pred PM=predm R=rest LCL=lcl LCLM=lclm UCL=ucl 
UCLM=uclm;
RUN; QUIT;

TITLE 'Example 8: Analysis as autoregressive model with backward 
algorithm';
PROC AUTOREG DATA=airtemp /*Backward algorithm results in AR(4) */; 
MODEL Temp=Year /NLAG=12 DW=12 BACKSTEP DWPROB;
OUTPUT OUT=auto_ar4 P=pred PM=predm R=rest LCL=lcl LCLM=lclm UCL=ucl 
UCLM=uclm;
RUN; QUIT;

TITLE 'Example 8: Figure 18 at top left';
PROC SGPLOT DATA=auto_ar1;
TITLE 'Analysis by PROC AUTOREG';
BAND X=year LOWER=lcl UPPER=ucl/ TRANSPARENCY=0.6 
LEGENDLABEL="Prediction interval" NAME="band1";
BAND X=year LOWER=lclm UPPER=uclm/ TRANSPARENCY =0.3 
LEGENDLABEL="Confidence interval" NAME="band2";
SCATTER x=year y=temp/ MARKERATTRS=(SIZE=7 SYMBOL=circlefilled) ;
SERIES x=year y=predm / LINEATTRS=(COLOR=verydarkblue THICKNESS=2 ) ;
SERIES x=year y=pred / LINEATTRS=(COLOR=verydarkred THICKNESS =2 ) ;
XAXIS LABEL ="Year " LABELATTRS=(SIZE=12)  valueATTRS=(SIZE=10);
YAXIS LABEL ="Temperature [grd C]" LABELATTRS=(SIZE=12) 
VALUEATTRS=(SIZE=10) ;
KEYLEGEND "band1" "band2" / LOCATION=inside
POSITION=bottomright;
RUN; QUIT;

/*Example 8: Figure 18 at top right analogous to Figure 18 at top left 
with datafile = auto_ar4*/
TITLE 'Example 8: Figure 18 at bottom';
PROC NLIN DATA=airtemp PLOTS=all;
PARMS a=7 b=1 c=1960 d=11 e=0.03 ;
MODEL temp=a-b*sin((year-c)*2*3.14/d)+e*year;
OUTPUT OUT=NLIN PREDICTED=pred L95=lcl L95M=lclm U95=ucl U95M=uclm;
RUN; QUIT;

TITLE 'Example 8: Figure 19 ';
PROC NLIN DATA=airtemp PLOTS=all CONVERGEPARM=1E-7;
PARMS a=0.034 b=-60 Year0=1985 ;
IF (Year >Year0) THEN MODEL Temp=a*Year + b;
ELSE MODEL Temp=a*Year0+b;
RUN; QUIT;
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Appendix 9. 

Solutions to Exercises

1. The scatterplots of the data for the two levels 1 and 2 of Org give the impression that 
a quadratic function of N may be suitable to describe the relation. It is not clear 
whether this is also a suitable approach for the variant without organic fertilization.

2. Assuming a quadratic function and considering the fact that the design is a 
randomized complete block design, the coincidence test rejects the hypothesis 
of coincidence with a Type 1 error rate of 0.05 

(F-value = (2552.716682-1962.3931)/(10-4)/5.826405 =16.886 and p value < 0.0001).

To obtain the intermediate results for the coincidence test we used PROC GLM 
with the following CLASS and MODEL statements: 
class org block;
model yield = org block N N*org N*N N*N*org/s;
class block;
model yield = block N N*N /s; 

Alternatively, a joint test for coincidence is possible using a contrast statement 
in PROC GLM: 
class block org;
model yield=block org org*n org*N*N / solution;
contrast ‘coincidence’ org 1 -1 0, 
                       org 1 0 -1, 
                       org*N 1 -1 0, 
                       org*N 1 0 -1, 
                       org*N*N 1 -1, 
                       org*N*N 1 0 -1;

The estimates and tests for the intercepts averaged across the blocks can be 
obtained by the statements
estimate ‘intercept Org=0’ intercept 3 block 1 1 1 org 3 0 0/ divisor=3;
estimate ‘intercept Org=1’ intercept 3 block 1 1 1 org 0 3 0/ divisor=3;
estimate ‘intercept Org=2’ intercept 3 block 1 1 1 org 0 0 3/ divisor=3;

Based on the common estimated residual variance s2 = 5.8264, the results for all 
regression parameters are:

Standard
Parameter Estimate Error DF t Value Pr > |t|

Org = 0
Intercept 36.4467 1.3936 22 26.15 < 0.0001
b1 0.08258 0.05131 22 1.61 0.1218
b2 0.00013 0.000348 22 0.37 0.7115

Org = 1
Intercept 34.6407 1.3583 22 25.5 < 0.0001
b1 0.5711 0.04363 22 13.09 < 0.0001
b2 -0.00291 0.000279 22 -10.45 < 0.0001

Org = 2
Intercept 36.3637 1.3583 22 26.77 < 0.0001
b1 0.3741 0.04363 22 8.57 < 0.0001
b2 -0.00197 0.000279 22 -7.07 < 0.0001

All parameters of the two levels with organic fertilization (Org = 1 and 2) are 
significantly different from zero; the regression coefficients of the variant Org = 0 
are not significantly different from zero. The reason for their non-significance may 



Answers and Supplements 579

be that in this case a linear function is appropriate and the quadratic approach is 
overparametrized (the tests are based on the partial approach).

As a consequence, polynomial functions of different order need to be considered 
for the different levels of organic fertilization, a situation which we did not discuss in 
this chapter. The need for this somewhat more complicated analysis does not arise if 
for all three levels of Org the same function type (e.g., a linear or quadratic function) is 
appropriate. We demonstrate two approaches to take this in consideration. The first one 
separates the analysis in two parts: the analysis for Org = 0 and the joint analysis for Org 
= 1 and 2. The second approach does not separate the analysis for the three Org levels 
using a trick which has several advantages compared to the first approach. 

3.1 Approach with separate analyses of Org = 0 and joint analysis of Org = 1 and 2
If the function type is not the same for all levels of a factor, the first idea may be to ana-
lyze the data separately for each level. If we would analyze the three organic variants 
separately and consider the block structure of the experiment, for each variant differ-
ent block means would be estimated. The efficient analysis of the RCB design requires, 
however, that all variants are analysed jointly. Moreover, we know from the F-test that 
there are significant differences between blocks. To consider the same block effects for 
all variants, we estimate block effects based on a joint analysis of all treatments as block 
effect = (total mean – mean of all values of the corresponding block), subtract these es-
timates from all observed values and then analyze the corrected data without block ef-
fects separately for each function type (Org = 0 and Org =1 and 2). In doing so, we do not 
regress observed values but corrected values (observed values – block effects) on the N 
fertilization rates. Therefore the degrees of freedom of the residuals have to be corrected.

3.1.1 Regression for the variant without organic fertilization
Due to our supposition that a linear approach is better suited for Org = 0, we choose 
a sequential approach starting with the linear term followed by a quadratic. For 
a polynomial regression analysis with a linear and a quadratic term and nine ob-
served values, the DF of the residuals would normally be N-3 = 6. To consider the 
correction of the observed values by the block effects (DF blocks = 2), we set the de-
nominator DF to N-3-2 = 4. This can be achieved in PROC MIXED by
model yield_corr= N N2 / df=4,4 htype=1;

The corrected yield corresponds to the variable yield _ corr. The parameter 
estimates are the same as above in the joint analysis and s2 = 7.2204. The sequential 
F-tests confirm our supposition that a linear function is better suited. 

Effect Numerator DF Denominator DF F Value Pr > F
N 1 4 49.63 0.0021
N2 1 4 0.11 0.7534

Finally, the fitted linear regression function is the following (using s2 = 6.3057):

Standard
ErrorParameter Estimate DF t Value Pr > |t|

Intercept 36.3071 1.3971 5† 25.99 < 0.0001
b1 0.1012 0.01342 5 7.54 0.0007
†For the linear function, we set the denominator DF = N-2-2 = 5.
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3. 1. 2 Regressions for the variants with organic fertilization
Again, we use the corrected values. The denominator DF have been set to N-6-2 = 
24-6-2 = 16 because the model has 6 regression parameters. The residual variance 
is common for both variants and is estimated as s2 = 4.7144. Again, the regression 
parameter estimates are the same as in the joint analysis of all three variants.
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Standard
ErrorParameter Estimate DF t Value Pr > |t|
Org = 1

intercept 34.6407 1.2218 16 28.35 < 0.0001
b1 0.5711 0.03924 16 14.55 < 0.0001
b2 -0.00291 0.000251 16 -11.62 < 0.0001

Org = 2
intercept 36.3637 1.2218 16 29.76 < 0.0001
b1 0.3741 0.03924 16 9.53 < 0.0001
b2 -0.00197 0.000251 16 -7.86 < 0.0001

The disadvantage of this approach with separation of the analysis by the function 
type is that the estimation of the residual variance is not based on all observed values and 
that degrees of freedom are lost for the tests. Therefore, we do not discuss further options 
under this approach (test of coincidence of parameters or variance heterogeneity for Org 
= 1 and 2) and recommend instead the following joint analysis of all three levels of Org.

3.2 Regressions based on a joint analysis for Org = 0, 1, and 2

We want to do a joint analysis fitting a linear regression for Org = 0 and a quadratic 
regression for Org = 1, 2. The trick to suppress the quadratic term for Org = 0 is 
based on the definition of an auxiliary variable denoted as switch (Piepho et al., 2006). 
switch is equal to 0 if Org = 0 and it is equal to 1 if Org = 1 or 2 so that the variable 
switch*org*N*N is equal to 0 if Org = 0 and it is equal to org*N*N if Org = 1 or 2.

With this new variable switch, we analyze the data with the following class  
and model statements in PROC GLM and test the coincidence:
class block org;
model yield=block org org*n switch*org*N*N / solution;
contrast ‘coincidence’ org 1 -1 0, 
                       org 1 0 -1, 
                       org*N 1 -1 0, 
                       org*N 1 0 -1, 
                       switch*org*N*N 1 -1, 
                       switch*org*N*N 1 0 -1;

Whether the three intercepts, the three linear terms, and the two quadratic 
terms (Org =1 and 2) coincide can be tested by
contrast ‘coincidence intercept’ org 1 -1 0, 
                                 org 1 0 -1;
contrast ‘coincidence linear’    org*N 1 -1 0, 
                                 org*N 1 0 -1;
contrast ‘coincidence quadratic’ switch*org*N*N 0 1 -1;

The results are the following:

Contrast DF Contrast SS Mean Square F Value Pr > F
joint coincidence 5 1337.95021 267.590042 47.71 < 0.0001
coincidence intercept 2 6.072477 3.036238 0.54 0.5892
coincidence linear 2 778.172377 389.086188 69.37 < 0.0001
coincidence quadratic 1 33.27615 33.27615 5.93 0.023

We see that the three intercepts coincide, whereas the linear and quadratic 
terms do not. The corresponding estimates and tests are shown in the table below. 
The intercepts have been calculated as averages across blocks and the tests are based 
on the common estimated residual variance s2 = 5.6086:
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Standard
ErrorParameter Estimate DF t Value Pr > |t|

Org = 0
Intercept 36.3071 1.31758 23 27.56 < 0.0001
b1 0.1012 0.01266 23 7.99 < 0.0001

Org = 1
Intercept 34.6407 1.33269 23 25.99 < 0.0001
b1 0.5711 0.04280 23 13.34 < 0.0001
b2 -0.00291 0.000273 23 -10.65 < 0.0001

Org = 2
Intercept 36.3637 1.33269 23 27.29 < 0.0001
b1 0.3741 0.04280 23 8.74 < 0.0001
b2 -0.00197 0.000273 23 -7.21 < 0.0001

The estimated regression parameters are identical to those obtained by the first 
approach; the test results differ slightly due to differences in the residual variance 
used and differences in the DF. 

The intercepts of the three levels of org do not differ significantly, so we fit a 
model with a common intercept. At first, we test with PROC MIXED whether vari-
ant-specific residual variances or a common one should be assumed for this model. 
class block org;
model yield=block org*n switch*org*N*N / solution;
REPEATED/ GROUP = org;

The LR-test for the comparison of the two models indicates a better fit of the 
model with a common variance (p value = 0.1115). Therefore, we delete the repeated 
statement in PROC MIXED. 

The common intercept in the mean of the blocks can be estimated and tested by 
the statement 
estimate ‘intercept ‘ intercept 3 block 1 1 1 /divisor=3;

Finally, we obtain the following results assuming a common variance (s2 = 5.4028):

Standard
ErrorParameter Estimate DF t Value Pr > |t|
Org = 0

Intercept 35.7746 0.7523 25 47.55 < 0.0001
b1 0.1053 0.00943 25 11.17 < 0.0001

Org = 1
Intercept 35.7746 0.7523 25 47.55 < 0.0001
b1 0.5460 0.03472 25 15.73 < 0.0001
b2 -0.00279 0.00024 25 -11.47 < 0.0001

Org = 2
Intercept 35.7746 0.7523 25 47.55 < 0.0001
b1 0.3871 0.03472 25 11.15 < 0.0001
b2 -0.00203 0.00024 25 -8.35 < 0.0001

Reference
Piepho, H.P., E.R. Williams, and M. Fleck. 2006. A note on the analysis of designed 

experiments with complex treatment structure. HortScience 41:446–452.
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Chapter 7: Analysis and 
interpretation of Interactions of 

fixed and Random Effects

Mateo Vargas, Barry Glaz, Jose Crossa, and Alex Morgounov

Appendix 1: SAS code for orthogonal polynomial contrasts and graphs
SAS code for calculating the orthogonal polynomial contrasts

The following SAS code can be used for calculating the orthogonal polynomial coef-
ficients for any contrast of interest and applied for the analyses of the example shown 
in Section 1. This procedure generates the correct coefficients for levels or rates that are 
equally or unequally spaced (as for the P rates we used). It is necessary to have installed 
the Interactive Matrix Language (IML) procedure. Our example here will show only 
how to calculate coefficients for P, because this is our only factor with quantitative rates 
or levels > 2. We show the code for calculating the contrasts for the main effect of P, and 
exclusively one two-way (from three), and one three-way (from three), and the unique 
four-way interactions with P, the extension to the other interactions is straightforward. 
We are including the four-way interaction contrast, even though this was not included 
in the reduced model. In Appendix 2, we show the complete code for calculating exhaus-
tively all the possible contrasts involving P in the four-way analysis of variance

SAS macro program
**** Reading data: Data Wheat is available in attached CSV file ****;
Data Wheat;

Infile "C:\Experiment 1 Data Wheat.CSV" dlm="," firstobs=3 ; 
Informat Soil$ 10. ;
Input Year Soil N P Rep Yield ;

Datalines;
Run;
**** Here begins the macro code for calculating the orthogonal 
polynomial coefficients in an automatic way ****;
%Macro Coefficients; 
Proc IML;
Plevels = {0, 50, 150, 250}; 
Coeff = Orpol(Plevels,3);
Ncoef = ncol(coeff)-1;
Call symputx("ncoef", ncoef);

%do K = 1%to &ncoef;
CoefGrade&K = t(Coeff[,&K+1]);
PosCoefGrade&K = rowcat(char( CoefGrade&K ,15,10));
NegCoefGrade&K = rowcat(char(-(CoefGrade&K),15,10)); 
Call symputx("PosCoefGrade&K", PosCoefGrade&K);
Call symputx("NegCoefGrade&K", NegCoefGrade&K);

%end;
Run;
Title1 "Four-way ANOVA, decomposing df for P into three contrasts";
Proc GLIMMIX Data = Wheat; 

Class Year Soil N P Rep;
Model Yield = Year | Soil | N | P; 
Random Rep(Year Soil);

**** P main effects contrasts ****;
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Contrast "Linear P" P &PosCoefGrade1 ; 
Contrast "Quadratic P" P &PosCoefGrade2 ; 
Contrast "Cubic P" P &PosCoefGrade3 ;
**** Year × P two-way interaction contrasts ****;
Contrast "Linear Y*P" Year*P &PosCoefGrade1 &NegCoefGrade1 ; 
Contrast "Quadratic Y*P" Year*P &PosCoefGrade2 &NegCoefGrade2 ; 
Contrast "Cubic Y*P" Year*P &PosCoefGrade3 &NegCoefGrade3 ;
**** Year × Soil × P three-way interaction contrasts ****; 
Contrast "Linear Y*S*P" Year*Soil*P

&PosCoefGrade1 &NegCoefGrade1 &NegCoefGrade1 &PosCoefGrade1; 
Contrast "Quadratic Y*S*P" Year*Soil*P

&PosCoefGrade2 &NegCoefGrade2 &NegCoefGrade2 &PosCoefGrade2; 
Contrast "Cubic Y*S*P" Year*Soil*P

&PosCoefGrade3 &NegCoefGrade3 &NegCoefGrade3 &PosCoefGrade3;
**** Year × Soil × N × P four-way interaction contrasts ****; 
Contrast "Linear Y*S*N*P" Year*Soil*N*P

&PosCoefGrade1 &NegCoefGrade1 &NegCoefGrade1 &PosCoefGrade1
&NegCoefGrade1 &PosCoefGrade1 &PosCoefGrade1 &NegCoefGrade1; 

Contrast "Quadratic Y*S*N*P" Year*Soil*N*P
&PosCoefGrade2 &NegCoefGrade2 &NegCoefGrade2 &PosCoefGrade2
&NegCoefGrade2 &PosCoefGrade2 &PosCoefGrade2 &NegCoefGrade2; 

Contrast "Cubic Y*S*N*P" Year*Soil*N*P
&PosCoefGrade3 &NegCoefGrade3 &NegCoefGrade3 &PosCoefGrade3

&NegCoefGrade3 &PosCoefGrade3 &PosCoefGrade3 &NegCoefGrade3;
Run;
%Mend;

%Coefficients;
Run;

Brief explanation of preceding SAS code

In the Plevels statement it is necessary to express how many and which levels of the 
variable you wish to calculate. For instance, for the data set we used in Section 1 of 
this chapter, P has 4 unevenly spaced rates: 0, 50, 150, and 250 kg ha-1. The Orpol 
function is used for obtaining the required coefficients; since there are three degrees 
of freedom, we can calculate three polynomial coefficients––linear, quadratic, and 
cubic––which are assigned to macro variables that are later used in the data step in 
the complete four-way ANOVA and contrasts.

In the contrast statements for the main effects, we need only positive values of the 
coefficients, but in the two-, three, and four-way contrasts, a combination of positive 
and negative coefficients are required, depending on the levels of each of the factors 
involved in those interactions. In Appendix 2, we show the procedure for obtain-
ing the corresponding order of signs for each contrast. These positive and negative 
coefficients are assigned to the PosCoefGrade and NegCoefGrade macro variables, 
respectively, using the Call Symput function. The order of the polynomial contrasts 
is obtained using the %do - %end cycle. Note that the appropriate number and grade 
of the coefficients are automatically determined in the ncoef = ncol(coeff)-1 statement. 
This program can be easily modified for different numbers and/or levels of factors.

It is important to mention that the order of the interaction coefficients in the 
CONTRAST statement depends on the order of the factors that are listed in the 
CLASS statement. If this is not the case the program may be executed without any 
errors but you may not get the intended contrast. This will be shown in a more 
detailed manner in the Exercise 1 of the Appendix 3.

Once we have the appropriate coefficients, the contrasts can be calculated using 
SAS procedures such as GLM, MIXED, or GLIMMIX.
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SAS Code for Graphing Interactions
Graphing the two-way interaction Year × P

The following code is useful for graphing a two-way interaction, the generalization to 
a three-way or four-way interaction is straightforward as will be shown in Appendix 2.
**** Reading data: Data Wheat is available in attached CSV file ****;
Data Wheat;

Infile "C:\Experiment 1 Data Wheat.CSV" dlm="," firstobs=3 ; 
Informat Soil$ 10. ;
Input Year Soil N P Rep Yield ; 

Datalines;
Run;
ODS select Covparms Tests3 Lsmeans LSMLines Meanplot; Title1 " ";
Title2 "Four-way ANOVA and LSD for Year x P Interaction using the 
Confidence Interval" ;
Proc GLIMMIX Data = Wheat ; 

Class Year Soil N P Rep ; 
Model Yield = Year Soil N P

Year*Soil Year*N Year*P Soil*N Soil*P
Year*Soil*N Year*Soil*P Soil*N*P ; 
Random Rep(Year Soil);

LSMeans Year*P / Lines CL Plot = mean (sliceby = Year Join CL);
ODS OUTPUT LSMeans = LSMeans ;

Run;
***** Generating the different curves to be used in graphing the LSD bars *****;
Data Graph;

Set LSMeans ; 
HWCI=Estimate-Lower; 
LSD = Sqrt(2)*(HWCI);
if year = 2007 then Y_07=Estimate;
if year = 2008 then Y_08=Estimate;
if year = 2007 then do; 

Yield1=Estimate; output; 
Yield1=Estimate - LSD; output; 
Yield1=Estimate + LSD; output;

end;
if year = 2008 then do;

Yield2=Estimate; output; 
Yield2=Estimate -LSD; 
output; 
Yield2=Estimate +LSD; 
output;
end;
Proc GPlot Data = Graph ;

Plot (Y_07 Y_08)*P (Yield1 Yield2)*P / frame overlay
vaxis = axis1 haxis = axis2 nolegend;

Symbol1 v=dot cv=black h = 2.0 l=1 w=2 i=rq ci=black ;

Symbol2 v=dot cv=red h = 2.0 l=1 w=2 i=RQ ci=Red ;

Symbol3 l=1 w=2 i=hiloct ci=black ;

Symbol4 l=1 w=2 i=hiloct ci=red ;

axis1 length = 4.5 in order = (0.8 to 2.4 by 0.4) 
label=(f=Albany h=2.0 a=90 r=0 "Grain yield (Mg ha-1) ") 

value=(f=Albany  
h=2.0 ) offset = (1) minor=none;

axis2 length = 4.5 in order = (0 to 250 by 50)
label=(f=Albany h=2.0 "P fertilizer rate (kg ha-1) ")
value=(f=Albany h=2.0 ) offset = (3) minor=none;

Run;



586 Appendix A 

Brief explanation of preceding SAS code

The output delivery system (ODS), ODS select Covparms Tests3 LSMLines 
Meanplot is for saving exclusively the useful information. ODS Output LSMeans = 
LSMeans statement is useful for creating a temporary file with only the information 
that will be needed later. For generating the different variables containing informa-
tion for the regression lines associated with each combination of the Year × P interac-
tion, we created the new variables Y_07 and Y_08 from the yield values. Similarly, 
cycles if – then do – end are used for obtaining the information needed in the upper 
and lower LSD bars. The codes can be adapted if, for example, four regression lines 
need to be depicted with their corresponding LSD error bars, as in the Soil × N × P 
interaction shown in Fig. 1.3 from Section 1 and as provided with code in Example 2 
of Appendix 2, and so on to any number of regression lines needed.

If we are interested in the ANOVA for only the terms found to be significant in 
the final model (Table 1.2), i.e. the four main effects, five two-way, and three three-
way interactions, without including the four-way interaction; all those terms should 
be included in the model statement when computing the correct LSD and/or the con-
fidence interval. In the LSMeans statement, we have included only the interaction 
that is of interest for graphing the LSD values, thus simplifying the output.

The selected output includes only three sections: with the covariance parameters estimates 
and the Type III test of fixed effects we have obtained all the information shown in Table 1.2.

The GLIMMIX Procedure
Covariance Parameter Estimates

Cov Parm Estimate Standard Error
Rep(Year*Soil) 0.000222 0.000953
Residual 0.008593 0.002084

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Year 1 4 1204.82 < 0.0001
Soil 1 4 556.51 < 0.0001
N 1 34 11.36 0.0019
P 3 34 37.75 < 0.0001
Year*Soil 1 4 125.30 0.0004
Year*N 1 34 9.45 0.0041
Year*P 3 34 6.40 0.0015
Soil*N 1 34 19.80 < 0.0001
Soil*P 3 34 13.72 < 0.0001
Year*Soil*N 1 34 33.31 < 0.0001
Year*Soil*P 3 34 7.94 0.0004
Soil*N*P 6 34 3.21 0.0131

From the Year*P Least Squares Means (lsmeans) table we can calculate the LSD 
value considering the confidence interval given by the upper and lower values, and 
then multiplying the half width of the interval (upper value minus the estimate or 
estimate minus lower value) by the square root of 2, as shown in the SAS code in the 
statements HWCI=Estimate-Lower; LSD = Sqrt(2)*(HWCI).

The estimates for the least squares means are then used for graphing the response curves 
by means of the GPLOT Procedure and using an interpolation method; the highest degree of 
the orthogonal polynomial contrast that was found to be significant in that particular two-way 
interaction, in this case for Year × P interaction in Table 1.2 was the quadratic contrast. This was 
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performed with the code i=rq, were i means interpolation and rq means Regression Quadratic, 
thus using the following statements and obtaining the graph shown below.
Symbol1 v=dot cv=black h = 2.0 l=1 w=2 i=rq ci=black ;

Symbol2 v=dot cv=red h = 2.0 l=1 w=2 i=rq ci=red ;

Year*P Least Squares Means

Year P Estimate Standard
Error DF t Value Pr >|t| Alpha Lower Upper

2007 0 1.6537 0.03361 34 49.20 < 
0.0001 0.05 1.5854 1.7221

2007 50 1.8600 0.03361 34 55.34 < 
0.0001 0.05 1.7917 1.9283

2007 150 2.0537 0.03361 34 61.10 < 
0.0001 0.05 1.9854 2.1221

2007 250 2.0838 0.03361 34 62.00 < 
0.0001 0.05 2.0154 2.1521

2008 0 0.9138 0.03361 34 27.19 < 
0.0001 0.05 0.8454 0.9821

2008 50 1.0213 0.03361 34 30.38 < 
0.0001 0.05 0.9529 1.0896

2008 150 1.0563 0.03361 34 31.43 < 
0.0001 0.05 0.9879 1.1246

2008 250 1.1250 0.03361 34 33.47 < 
0.0001 0.05 1.0567 1.1933

The next section of output includes the LSD grouping of the lsmeans which are 
calculated using the option Lines in the LSMeans statement as follows:
LSMeans Year*P / Lines CL Plot = mean (sliceby = Year Join CL);

T Grouping for Year*P
Least Squares Means (Alpha=0.05)

LS-means with the same letter are not significantly different.
Year P Estimate
2007 250 2.0838 A
2007 150 2.0537 A
2007 50 1.8600 B
2007 0 1.6537 C
2008 250 1.1250 D
2008 150 1.0563 E D
2008 50 1.0213 E
2008 0 0.9138 F

Finally, the option Plot = mean (sliceby = Year Join CL), directly creates the 
following graph of means responses for each year (sliceby=year), joining the mean 
values using a straight line (Join) and including the 95% confidence limits (CL).
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As you can see these graphs are directly and easily obtained using a single state-
ment. However, the main limitation for this kind of graph is that you can only use 
straight lines as response curves and you cannot use a more sophisticated interpola-
tion method as you can using the GPLOT procedure.

In Appendix 2, we show other examples for obtaining more complicated graphs, 
for three- and four-way interactions, and we will show that the extension from this 
two-way interaction case is straightforward.

Appendix 2: Generalization of SAS code programs shown in Appendix 1

Example 1: SAS macro code for calculating orthogonal polynomial coefficients

In this Appendix, we describe the complete SAS code for calculating all possible or-
thogonal polynomial contrasts involving P in the data set Wheat. This will include 
the contrasts for the main effect of P, the six two-way interactions, the four three-way 
interactions, and the four- way interaction. Although we recommended not including 
the four-way interaction in our reduced analysis in Section 1, as a resource for readers, 
we will include here the code for the contrasts associated with this interaction.

As stated in Appendix 1, it is necessary to have installed the Interactive Matrix 
Language (IML) procedure for calculating the orthogonal polynomial coefficients. 
In the contrast statements for the main effects, we need only positive values of the 
coefficients, but in the two-, three, and four-way contrasts, positive and negative 
coefficients are required depending on the levels of each of the factors involved in 
those interactions. For obtaining the order of signs of the coefficients in the corre-
sponding contrast, one can use Table A2.1 (in this appendix) as an example. This 
table is only for the linear contrasts (CoefGrade1) where CoefGrade1 is a vector of 
length 1 × 4 (1 row, 4 columns), one coefficient value for each P rate.

One may use the coefficient -1 for Year 1 and the coefficient +1 for Year 2, and 
so on, for any factor: -1 for Black soil and +1 for Chesnut soil; -1 for the first rate of 
N (N0) and +1 for the second rate of N (N30). In fact, this selection of signs is what 
is used in a factorial experiment 2k, where 2 is the number of levels of each factor 
and k is the number of factors. The order of positive and negative coefficients is not 
important because the significance of each contrast is based on sum of squares of dif-
ferences among the levels tested. Therefore, the sign in these differences is cancelled 
by squaring them. However, if you are using the Estimate statement instead of the 
Contrast statement, the sign is important, because the interpretation would reverse. 
The significance of the comparison does not differ between the Contrast and Estimate 
statements. That is, the standard errors, the t values, and the p-values are exactly the 
same despite the choice of which level to consider as -1 or +1. Again, the significance 
of a Contrast or an Estimate statement, whichever you prefer to use, will be equivalent.
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Table A2.1. Coefficients for the linear contrast for P main effect, two-way, three-way, and four-
way interactions.

Effect Factor 1 Coefficient Factor 2 Coefficient Factor 3 Coefficient Phosphorus 
fertilizer rates

P main effect P 1 PosCoefGrade1
Two-way
Y × P Interaction

Year 1 1 PosCoefGrade1
Year 2 -1 NegCoefGrade1

Three-way
Y × Soil × P 
Interaction

Year 1 1 Black 1 PosCoefGrade1
Chestnut -1 NegCoefGrade1

Year 2 -1 Black 1 NegCoefGrade1
Chestnut -1 PosCoefGrade1

Four-way
Y × Soil × N × P 
Interaction

Year 1 1
Black 1 N0 1 PosCoefGrade1

N30 -1 NegCoefGrade1

Chestnut -1 N0 1 NegCoefGrade1
N30 -1 PosCoefGrade1

Year 2 -1
Black 1 N0 1 NegCoefGrade1

N30 -1 PosCoefGrade1

Chestnut -1 N0 1 PosCoefGrade1
N30 -1 NegCoefGrade1

Therefore, using the sequence of signs shown in Table A2.1, the complete SAS code for 
estimating all the possible polynomial contrasts involving the P factor, is the following:

SAS macro program
**** Reading data: Data Wheat is available in attached CSV file ****;
Data Wheat;

Infile "C:\Experiment 1 Data Wheat.CSV" dlm="," firstobs=3 ;  
Informat Soil$ 10. ;
Input Year Soil N P Rep Yield ; 

Datalines;
Run;
**** Here begins the macro code for calculating the orthogonal 
polynomial contrasts in an automatic way ****;
%Macro Coefficients; 
Proc IML;

Plevels = {0, 50, 150, 250};
Coeff = Orpol(Plevels,3);
Ncoef = ncol(coeff)-1;
Call symputx("ncoef", ncoef);
%do K = 1%to &ncoef;

CoefGrade&K = t(Coeff[,&K+1]);
PosCoefGrade&K = rowcat(char( CoefGrade&K ,15,10));
NegCoefGrade&K = rowcat(char(-(CoefGrade&K),15,10));
Call symputx("PosCoefGrade&K", PosCoefGrade&K);
Call symputx("NegCoefGrade&K", NegCoefGrade&K);

%end; 
Run;
Title1 "Four-way ANOVA, decomposing df for P into three contrasts";
Proc GLIMMIX Data = Wheat; 

Class Year Soil N P Rep;
Model Yield = Year | Soil | N | P; 
Random Rep(Year Soil);

**** P main effects contrasts ****;
Contrast "P Linear " P &PosCoefGrade1 ; 
Contrast "P Quadratic " P &PosCoefGrade2 ; 
Contrast "P Cubic" P &PosCoefGrade3 ;
**** Year × P two-way interaction contrasts ****;
Contrast "Y × P Linear " Year*P &PosCoefGrade1 &NegCoefGrade1 ;  
Contrast "Y × P Quadratic" Year*P &PosCoefGrade2 &NegCoefGrade2 ;  
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Contrast "Y × P Cubic" Year*P &PosCoefGrade3 &NegCoefGrade3 ;
**** Soil × P two-way interaction contrasts ****;
Contrast "S × P Linear" Soil*P &PosCoefGrade1 &NegCoefGrade1 ;  
Contrast "S × P Quadratic" Soil*P &PosCoefGrade2 &NegCoefGrade2 ;
Contrast "S × P Cubic" Soil*P &PosCoefGrade3 &NegCoefGrade3 ;
**** N × P two-way interaction contrasts ****;
Contrast "N × P Linear" N*P &PosCoefGrade1 &NegCoefGrade1 ;  
Contrast "N × P Quadratic" N*P &PosCoefGrade2 &NegCoefGrade2 ;  
Contrast "N × P Cubic " N*P &PosCoefGrade3 &NegCoefGrade3 ;
**** Year × Soil × P three-way interaction contrasts ****;  
Contrast "Y × S × P Linear" Year*Soil*P

&PosCoefGrade1 &NegCoefGrade1 &NegCoefGrade1 &PosCoefGrade1 ;
Contrast "Y × S × P Quadratic" Year*Soil*P

&PosCoefGrade2 &NegCoefGrade2 &NegCoefGrade2 &PosCoefGrade2 ; 
Contrast "Y × S × P Cubic" Year*Soil*P

&PosCoefGrade3 &NegCoefGrade3 &NegCoefGrade3 &PosCoefGrade3 ;
**** Year × N × P three-way interaction contrasts ****;  
Contrast "Y × N × P Linear" Year*N*P

&PosCoefGrade1 &NegCoefGrade1 &NegCoefGrade1 &PosCoefGrade1 ; 
Contrast "Y × N × P Quadratic" Year*N*P

&PosCoefGrade2 &NegCoefGrade2 &NegCoefGrade2 &PosCoefGrade2 ; 
Contrast "Y × N × P Cubic" Year*N*P

&PosCoefGrade3 &NegCoefGrade3 &NegCoefGrade3 &PosCoefGrade3 ;
**** Soil × N × P three-way interaction contrasts ****;  
Contrast "S × N × P Linear" Soil*N*P

&PosCoefGrade1 &NegCoefGrade1 &NegCoefGrade1 &PosCoefGrade1 ; 
Contrast "S × N × P Quadratic" Soil*N*P

&PosCoefGrade2 &NegCoefGrade2 &NegCoefGrade2 &PosCoefGrade2 ; 
Contrast "S × N × P Cubic" Soil*N*P

&PosCoefGrade3 &NegCoefGrade3 &NegCoefGrade3 &PosCoefGrade3 ;
**** Year × Soil × N × P four-way interaction contrasts ****; 
Contrast "Y × S × N × P Linear" Year*Soil*N*P

&PosCoefGrade1 &NegCoefGrade1 &NegCoefGrade1 &PosCoefGrade1
&NegCoefGrade1 &PosCoefGrade1 &PosCoefGrade1 &NegCoefGrade1; 

Contrast "Y × S × N × P Quadratic" Year*Soil*N*P
&PosCoefGrade2 &NegCoefGrade2 &NegCoefGrade2 &PosCoefGrade2
&NegCoefGrade2 &PosCoefGrade2 &PosCoefGrade2 &NegCoefGrade2; 

Contrast "Y × S × N × P Cubic" Year*Soil*N*P
&PosCoefGrade3 &NegCoefGrade3 &NegCoefGrade3 &PosCoefGrade3
&NegCoefGrade3 &PosCoefGrade3 &PosCoefGrade3 &NegCoefGrade3;

Run;
%Mend;
%Coefficients;
Run;

This SAS code was discussed previously in Appendix 1. Here, we are only add-
ing all possible contrasts.

The selected output for this complete four-way model

The covariance parameter estimates and the Type III tests of fixed effects were already shown 
in Table 1.1 of Section 1. We repeat that information here and we also show here the complete 
results for all the possible contrasts involving the P rates from the Experiment 1 data.

The GLIMMIX Procedure

Covariance Parameter Estimates
Cov Parm Estimate Standard Error
Rep(Year*Soil) 0.000292 0.000955
Residual 0.008036 0.002148

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
Year 1 4 1204.82 < 0.0001
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Soil 1 4 556.51 < 0.0001
N 1 28 12.15 0.0016
P 3 28 40.37 < 0.0001
Year*Soil 1 4 125.30 0.0004
Year*N 1 28 10.11 0.0036
Year*P 3 28 6.84 0.0013
Soil*N 1 28 21.17 < 0.0001
Soil*P 3 28 14.67 < 0.0001
N*P 3 28 1.49 0.2400
Year*Soil*N 1 28 35.62 < 0.0001
Year*Soil*P 3 28 8.50 0.0004
Year*N*P 3 28 0.65 0.5892
Soil*N*P 3 28 5.39 0.0047
Year*Soil*N*P 3 28 2.13 0.1183

Contrasts
Label Num DF Den DF F Value Pr > F
P Linear 1 28 106.69 < 0.0001
P Quadratic 1 28 12.60 0.0014
P Cubic 1 28 1.82 0.1886
Y × P Linear 1 28 15.21 0.0006
Y × P Quadratic 1 28 5.09 0.0321
Y × P Cubic 1 28 0.24 0.6285
S × P Linear 1 28 43.81 < 0.0001
S × P Quadratic 1 28 0.19 0.6635
S × P Cubic 1 28 0.00 0.9801
N × P Linear 1 28 2.59 0.1190
N × P Quadratic 1 28 0.48 0.4927
N × P Cubic 1 28 1.39 0.2491
Y × S × P Linear 1 28 24.96 < 0.0001
Y × S × P Quadratic 1 28 0.02 0.8787
Y × S × P Cubic 1 28 0.50 0.4835
Y × N × P Linear 1 28 0.82 0.3718
Y × N × P Quadratic 1 28 0.49 0.4902
Y × N × P Cubic 1 28 0.64 0.4307
S × N × P Linear 1 28 3.00 0.0943
S × N × P Quadratic 1 28 0.07 0.7866
S × N × P Cubic 1 28 13.09 0.0012
Y × S × N × P Linear 1 28 0.50 0.4870
Y × S × N × P 
Quadratic 1 28 0.01 0.9436

Y × S × N × P Cubic 1 28 5.90 0.0218

Generalization of SAS Code for Graphing Interactions

Example 2: Graphing the three-way interaction Year × Soil × P

Here we present an example for graphing a three-way interaction. For Fig. 1.2, we are 
interested in the ANOVA for all the terms which were significant, that is, the four main 
effects, five two-way, and three three-way interactions; thus all those terms should be 
included in the model statement when computing the correct LSD and/or the confidence 
interval. However, in the LSMeans statement, we have included only the interactions 
that are of interest for graphing the LSD values in order to simplify the output.
**** Reading data: Data Wheat is available in attached CSV file ****;
Data Wheat;
Infile "C:\Experiment 1 Data Wheat.CSV" dlm="," firstobs=3 ; 
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Informat Soil$ 10. ;
Input Year Soil N P Rep Yield ; 
Datalines;
Run;
ODS select CovParms Tests3 LSMLines Meanplot;
Title2 "Four-way ANOVA and LSD for Year x Soil x P Interaction using 
the Confidence Interval";
Proc GLIMMIX data = Wheat; 

Class Year Soil N P Rep ; 
Model Yield = Year Soil N P

Year*Soil Year*N Year*P Soil*N Soil*P 
Year*Soil*N Year*Soil*P Soil*N*P;

Random Rep(Year Soil);
LSMeans Year*Soil*P / Lines CL plot=mean(sliceby=Year*Soil Join CL); 
ODS Output LSMeans = LSMeans;
Run;
***** Generating the different curves to be used in graphing the LSD 
bars *****;
Data Graph;

Set LSMeans ;
HWCI = Estimate - Lower; 
LSD = Sqrt(2)*(HWCI);

if Year = 2007 and Soil = "black" then Y1S1 = Estimate ;
if Year = 2007 and Soil = "chestnut" then Y1S2 = Estimate ; 
if Year = 2008 and Soil = "black" then Y2S1 = Estimate ; 
if Year = 2008 and Soil = "chestnut" then Y2S2 = Estimate ;
if Year = 2007 and Soil = "black" then do; 

Yield1 = Estimate; output; 
Yield1 = Estimate – (LSD/2); output; 
Yield1 = Estimate + (LSD/2); output;

end;
if Year = 2007 and Soil = "chestnut" then do; 

Yield2 = Estimate; output; 
Yield2 = Estimate – (LSD/2); output; 
Yield2 = Estimate + (LSD/2); output;

end;
if Year = 2008 and Soil = "black" then do;

Yield3 = Estimate; output;
Yield3 = Estimate – (LSD/2); output; 
Yield3 = Estimate + (LSD/2); output;

end;
if Year = 2008 and Soil = "chestnut" then do;

Yield4 = Estimate; output; 
Yield4 = Estimate – (LSD/2); output; 
Yield4 = Estimate + (LSD/2); output;

end;
Run;
** Graphics options for creating an enhanced meta-file **; 
FILENAME Figure 'C:\Output\Figure 2.1, Y x S x P.EMF';
GOPTIONS DEVICE=SASEMF GSFNAME=Figure GSFMODE=Replace;
Proc Gplot data = Graph ;

Plot (Y1S1 Y1S2 Y2S1 Y2S2)*P (Yield1 Yield2 Yield3 Yield4)*P /
overlay frame vaxis = axis1 haxis = axis2 nolegend;

Symbol1 v=dot cv=black h = 2.0 l=1 w=2 i=rl ci=black ;
Symbol2 v=dot cv=blue h = 2.0 l=1 w=2 i=rq ci=blue ;
Symbol3 v=dot cv=green h = 2.0 l=1 w=2 i=rl ci=green ;
Symbol4 v=dot cv=red h = 2.0 l=1 w=2 i=rl ci=Red ;
Symbol5 l=1 w=2 i=hiloct ci=black; 
Symbol6 l=1 w=2 i=hiloct ci=blue; 
Symbol7 l=1 w=2 i=hiloct ci=green; 
Symbol8 l=1 w=2 i=hiloct ci=Red;
axis1 length = 4.5 in order = (0.5 to 3.0 by 0.5)

label=(f=Albany h=3.0 a=90 r=0 "Grain yield (Mg ha-1)")
value=(f=Albany h=3.0) offset = (1) minor=none;

axis2 length = 7.0 in order = (0 to 250 by 50) 
label=(f=Albany h=3.0 "P fertilizer rate (kg ha-1)") 
value=(f=Albany h=3.0) offset = (3) minor=none;

Title1 f=Albany h=2.0 "Figure 1.2.- Year × Soil × P Interaction 
response profiles";
Run;
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Brief Description of SAS code

The ODS select CovParms Tests3 LSMLines Meanplot option is used to save the 
useful and needed output: the covariance parameters of estimates for random terms 
(CovParms); the Type III tests of fixed effects (Tests3); the least squares means and 
their t (LSD) grouping (LSMLines); and finally the mean response profiles for the 
three-way interaction (Meanplot). The SAS system is insensitive to small or capital 
letters, we use a mix of both only for emphasis.

The meanplot option or simply mean requests that the least squares means 
(lsmeans) be displayed. For example, in the line LSMeans Year*Soil*P / Lines CL 
plot=mean(sliceby=Year*Soil Join CL), the lsmeans response profiles are requested for 
the three- way Year × Soil × P interaction. The meanplot-options controls the display of 
the least square means; join or connect connects the lsmeans with lines; Sliceby=Year*Soil 
creates four response profiles coming from the two-way interaction Year × Soil at each 
P rate; and the CL code displays upper and lower confidence limits for the lsmeans. By 
default, 95% limits are drawn. The confidence levels can be changed with the alpha= 
option. In the next example, we will ask for the lsmeans, LSD grouping, and the response 
profiles for all the main effects, two-way, three-way, and the four-way interactions.

The second part of the SAS program is for calculating and graphing the response 
profiles for each mean using the GPLOT procedure, in order to include a differ-
ent interpolation curve for each profile, rather than simply using lines joined in the 
default output of the GLIMMIX procedure.

Using information saved in the temporary file named LSMeans in the ODS 
Output LSMeans = LSMeans statement, we calculate first the half width of the 
confidence interval using the HWCI = Estimate – Lower statement, and finally we 
calculate the LSD value using the expression LSD = Sqrt(2)*(HWCI).

In the next block of statements, using the first statement as an example: if Year = 
2007 and Soil = "black" then Y1S1 = Estimate creates one response profile for the first 
Year × Soil combination (Year 1, Soil 1) and assigns the values to a new variable Y1S1, 
which will be used for graphing the corresponding response profiles, and so on for 
the other three Year × Soil combinations. Similarly the following if-then do-end cycle:

if Year = 2007 and Soil = "black" then do; 
Yield1 = Estimate; output; 
Yield1 = Estimate –(LSD/2); output; 
Yield1 = Estimate + (LSD/2); output;
end;

is used for calculating the center, lower, and upper LSD bars to be included for each re-
sponse profile at each P rate. This is similar for the other three Year × Soil combinations.

In the Plot (Y1S1 Y1S2 Y2S1 Y2S2)*P (Yield1 Yield2 Yield3 Yield4)*P / overlay state-
ment for the GPLOT procedure we ask to simultaneously plot the four response profiles 
and the four LSD bars associated with each curve. Then, with the Symbol option, we can 
use a different interpolation method for each curve, using, for example, i=rl, i=rq, or i=rc, 
for a linear, quadratic or cubic regression, respectively. For drawing the LSD bars, we 
used the interpolation alternative i=hiloct. The generalization to a four-way interaction 
in which we need to include eight response profiles is straightforward from this example.
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Complete Selected Output from this example

The results for the covariance parameter estimates and the Type III tests of fixed ef-
fects are the same here as those shown previously in Table 1.2 from Section 1, which 
corresponded to the reduced final model.

The GLIMMIX Procedure

Covariance Parameter Estimates

Cov Parm Estimate Standard Error

Rep(Year*Soil) 0.000222 0.000953

Residual 0.008593 0.002084

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F
Year 1 4 1204.82 < 0.0001
Soil 1 4 556.51 < 0.0001
N 1 34 11.36 0.0019
P 3 34 37.75 < 0.0001
Year*Soil 1 4 125.30 0.0004
Year*N 1 34 9.45 0.0041
Year*P 3 34 6.40 0.0015
Soil*N 1 34 19.80 < 0.0001
Soil*P 3 34 13.72 < 0.0001
Year*Soil*N 1 34 33.31 < 0.0001
Year*Soil*P 3 34 7.94 0.0004
Soil*N*P 6 34 3.21 0.0131

The following lsmeans and their LSD grouping were also shown in Table 1.4 of Section 1.

T Grouping for Year*Soil*P Least

Squares Means (Alpha=0.05)
LS-means with the same letter are not significantly different.
Soil Year P Estimate
black 2007 250 2.7075 A
black 2007 150 2.5600 B
black 2007 50 2.2075 C
black 2007 0 1.9475 D
chestnut 2007 150 1.5475 E
chestnut 2007 50 1.5125 E
chestnut 2007 250 1.4600 F E
chestnut 2007 0 1.3600 F G
black 2008 250 1.3050 H G
black 2008 150 1.2225 H
black 2008 50 1.1825 H
black 2008 0 1.0375 I
chestnut 2008 250 0.9450 J I
chestnut 2008 150 0.8900 J K
chestnut 2008 50 0.8600 J K
chestnut 2008 0 0.7900 K

The following graph showing the four response profiles for the Year × Soil × 
P interaction was obtained with the statement LSMeans Year*Soil*P / Lines CL 
plot=mean(sliceby =Year*Soil Join CL), already explained above.
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Finally, the next plot was obtained using the GPLOT procedure and corre-
sponds to Fig. 1.2 shown previously in Section 1 when explaining the significant 
interactions found in the final model.

Example 3: Four-way ANOVA, Mean Plots, and LSD values for Main Effects and 
all Two-, Three-, and Four-Way Interactions.
**** Reading data: Data Wheat is available in attached CSV file ****;
Data Wheat;

Infile "C:\Experiment 1 Data Wheat.CSV" dlm="," firstobs=3 ; 
Informat Soil$ 10. ;
Input Year Soil N P Rep Yield ; Datalines;

Run;
ODS select CovParms Tests3 Lsmeans Diffs LSMLines Meanplot;
Title2 "Four-way ANOVA and mean plots for all main effects and all 
interactions";
Proc GLIMMIX data = Wheat;

Class Year Soil N P Rep;
Model Yield = Year | Soil | N | P ;
Random Rep(Year Soil);
LSMeans Year | Soil | N | P / PDIFF Lines CL;
LSMeans Year Soil N P / plot = mean (Join CL);
LSMeans Year*Soil Year*N Year*P/plot=mean (sliceby=Year Join CL);
LSMeans Soil*N Soil*P / plot = mean (sliceby = Soil Join CL);
LSMeans N*P / plot = mean (sliceby = N Join CL);
LSMeans Year*Soil*N Year*Soil*P/plot=mean (sliceby=Year*Soil Join CL);
LSMeans Year*N*P / plot = mean (sliceby = Year*N Join CL);
LSMeans Soil*N*P / plot = mean (sliceby = Soil*N Join CL);
LSMeans Year*Soil*N*P / plot=mean (sliceby = Year*Soil*N Join CL);
ODS output lsmeans = LSMEANS diffs=DIFFS tests3=DOF;

Run;
*** Strategy for Calculating the LSD using the Average Standard Error 
of Differences ***;
Proc Sort data = DOF;

By Effect;
Proc Sort data = DIFFS;

By Effect;
Proc Means data=DIFFS mean noprint;

By Effect;
Output out = ASED mean = AvStdErr;
Var StdErr;

Data LSD;
Merge ASED DOF;
By Effect;
t = tinv(1-0.05 / 2, DenDF);
LSD = t*AvStdErr;
Drop NumDF ;



596 Appendix A 

Run;
If AvStdErr = . then delete ;
Title2 "LSD calculated using the Average Standard Error of Differences" 
;
Proc Print Data = LSD ;

Var Effect AvStdErr DenDF t LSD;
Run;

Brief description of the SAS code.
Almost all the components of this SAS code were explained previously in this ap-
pendix; now we will describe only additional statements used. Firstly, because we 
are interested in the complete model and in all lsmeans, we are using the bar nota-
tion of SAS in both the Model and LSMeans statements. The new option PDIFF in 
the LSMeans statement is used for generating the least squares differences, their 
standard errors, t values, and p-values, which will be saved in the temporary file 
DIFFS with the statement ODS output lsmeans diffs=DIFFS tests3=DOF, and later 
used for calculating the LSD value by using the average standard error of differences 
(ASED) obtained in the related Proc Means block of statements.

The temporary file DOF is generated for saving the information related to the degrees 
of freedom (NumDF, DenDF) for numerator and denominator, respectively, in the Type III 
tests of fixed effects for each term included in the model. The DenDF are used later in asking 
SAS for the accumulated t probability using the t = tinv(1 - 0.05 / 2, DenDF) statement, and 
finally calculating the LSD values for each effect through the expression LSD = t*AvStdErr.

In addition to the description of the statements used for graphing the response 
profiles in Example 2 above, now we will provide a more detailed explanation of this 
code. In the line LSMeans Year Soil N P / plot = mean (join cl), the lsmeans response 
profiles are requested for all the main effects Year, Soil, N, and P, simultaneously.

The statement LSMeans Year*Soil Year*N Year*P / plot = mean (sliceby = Year 
Join CL) is used for simultaneously requesting the response profiles for the Year × 
Soil, Year × N, and Year × P interactions. Sliceby=fixed-effect specifies the Year effect 
by which to group the means in a single plot, and the levels for the Soil, N, and P 
effects to be drawn in the horizontal axis, because Year is a qualitative factor while 
N and P are quantitative factors. Similarly, the statement LSMeans Soil*N Soil*P / 
plot = mean (sliceby = Soil Join CL) is used to draw the individual response profiles 
for each Soil at the N and P levels in the horizontal axis.

For separating means of three-way interactions, we can use a statement like the following: 
LSMeans Year*Soil*N Year*Soil*P / plot = mean (sliceby=Year*Soil Join CL), in which we are 
analyzing the three-way interactions Year × Soil × N and Year × Soil × P, creating four response 
profiles coming from the two-way interaction Year × Soil at each level of the N and P rates.

Finally, the statement LSMeans Year*Soil*N*P / plot = mean (sliceby = Year*Soil*N 
Join CL) is useful for drawing the eight response profiles for the three-way combination 
of the levels of factors Year, Soil, and N, all of them with two levels, and for each level of 
the P factor in the horizontal axis. Only one of the 15 graphs obtained with the provided 
SAS code are included in the SAS output (see Fig. 1.3, Section 1)

Partial Selected Output of SAS Code for Example 3

The covariance parameter estimates and Type III tests of fixed effects are the same 
as shown in the first example of this appendix. Instead of showing these again, we 
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show the structure for the lsmeans, the differences, as well as the t grouping for the 
two-way Year × Soil interaction, as an example for visualizing the standard errors of 
the differences used for calculating the LSD values using the ASED.

Year*Soil Least Squares Means

Soil Year Estimate StandardError DF t Value Pr >|t| Alpha Lower Upper

black 2007 2.3556 0.02546 4 92.52 < 0.0001 0.05 2.2849 2.4263
chestnut 2007 1.4700 0.02546 4 57.74 < 0.0001 0.05 1.3993 1.5407
black 2008 1.1869 0.02546 4 46.62 < 0.0001 0.05 1.1162 1.2576
chestnut 2008 0.8712 0.02546 4 34.22 < 0.0001 0.05 0.8006 0.9419

Differences of Year*Soil Least Squares Means

Soil Year _Soil _Year Estimate Standard 
Error DF t Value Pr >|t| Alpha Lower Upper

black 2007 chestnut 2007 0.8856 0.03601 4 24.60 < 
0.0001 0.05 0.7857 0.9856

black 2007 black 2008 1.1687 0.03601 4 32.46 < 
0.0001 0.05 1.0688 1.2687

black 2007 chestnut 2008 1.4844 0.03601 4 41.22 < 
0.0001 0.05 1.3844 1.5843

chestnut 2007 black 2008 0.2831 0.03601 4 7.86 0.0014 0.05 0.1832 0.3831

chestnut 2007 chestnut 2008 0.5988 0.03601 4 16.63 < 
0.0001 0.05 0.4988 0.6987

black 2008 chestnut 2008 0.3156 0.03601 4 8.77 0.0009 0.05 0.2157 0.4156

T Grouping for Year*Soil Least Squares Means (Alpha=0.05)
LS-means with the same letter are not significantly different.
Soil Year Estimate
black 2007 2.3556 A
chestnut 2007 1.4700 B
black 2008 1.1869 C
chestnut 2008 0.8712 D

LSD calculated using the Average Standard Error of Differences
Obs Effect AvStdErr DenDF t LSD
1 N 0.02241 28 2.04841 0.04591
2 N*P 0.04482 28 2.04841 0.09181
3 P 0.03169 28 2.04841 0.06492
4 Soil 0.02546 4 2.77645 0.07069
5 Soil*N 0.03318 28 2.04841 0.06796
6 Soil*N*P 0.06400 28 2.04841 0.13109
7 Soil*P 0.04574 28 2.04841 0.09369
8 Year 0.02546 4 2.77645 0.07069
9 Year*N 0.03318 28 2.04841 0.06796
10 Year*N*P 0.06400 28 2.04841 0.13109
11 Year*P 0.04574 28 2.04841 0.09369
12 Year*Soil 0.03601 4 2.77645 0.09997
13 Year*Soil*N 0.04752 28 2.04841 0.09734
14 Year*Soil*N*P 0.09089 28 2.04841 0.18619
15 Year*Soil*P 0.06520 28 2.04841 0.13355

Finally, following is the graph obtained for the three-way Soil × N × P interac-
tion, like that shown in Fig. 1.3 from Section 1.
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Appendix 3: Answers to Review Questions and Exercises
Review Questions: True or False

1. When the researcher can identify predetermined contrasts, then these and not the 
LSD should be used for mean separation. True

2. It is not important whether you include all of the interactions in your model, 
your F-test result for each effect will be identical in the model with and without 
the interactions. For example, if a study includes genotypes and compost rates, 
we can ignore the interaction of Genotype × Compost and each p-value for 
Genotype and Compost will be identical to each p-value for Genotype and 
Compost in the analysis that includes the Genotype × Compost interaction. 
False. By including interactions, the residual variance will change, therefore 
each term in the Analysis of Variance that included interactions will have a 
different F value compared with the analysis that did not include interactions.

3. In a study with three factors, the initial analysis must include main effects, two-
way interactions, and the three-way interaction. If the three-way interaction is 
significant, then the researcher cannot properly discuss any main effect or two-
way interaction. False. It is likely that the researcher will report results based on 
the analysis of the three-way interaction and we encourage researchers to follow 
this approach. However, if the significant F value for the three-way interaction is 
based largely on non-crossover interactions, then results for some main effects and 
some two-way interactions may provide similar information in a simpler format 
than the three-way interaction. When this is the case, the author may choose to 
present the data of the lower order effect as long as it is done so within the context 
of the higher-order interaction. When presented with this situation, there is not a 
standard correct approach. The author must determine which approach best (most 
accurately and in the simplest format) makes the points he/she feels are important.

4. It is never appropriate to speculate about what causes a significant effect. False.

Researchers should carefully identify results that lead to logical speculation based 
on their subject-area knowledge. It is crucial however, that the author clearly 
identifies these comments as speculation.

5. A researcher conducts an experiment in each of two years. When analyzing 
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such an experiment, it is always necessary that Year be considered as a random 
effect. False. Often when there are a low number of levels for what is often 
considered as a random effect, it is preferable to analyze it as a fixed effect.

6. The more levels a researcher has for an effect that is normally considered as a 
random effect (such as Year or Location), the more likely it would be useful to 
analyze it as a random effect. True

7. It is not important when making inferences whether an effect is fixed or random. 
False.

Inferences about a random effect should pertain to the population being tested. 
Inferences about fixed effects should pertain only to the specific effects 
(qualitative factor) or range of effects (quantitative factor) that were tested.

Exercise 1

Using the data corresponding to the example shown in Section 1 from this chapter, 
construct a SAS program that calculates in a step-wise fashion the F values for the 
main effects, 2-way, 3- way, and then the 4-way interactions as well as the single 
degree of freedom contrasts for the linear, quadratic, and cubic responses of GY 
to P for all effects involving P. Rather than using the method that we provided in 
Appendices 1 and 2 that automatically calculates the coefficients, in this exercise we 
ask that you insert the actual coefficients into each line of code.

Answer

The first step is to run Proc IML to obtain the correct coefficients. Since our unequal-
ly spaced rates of P are 0, 50, 150, and 250 kg P ha-1, the following code will produce 
the correct regression coefficients.
Proc IML; 

Pcoeff=Orpol({0,50,150,250}); 
Print Pcoeff;

Run;

The output from this program is the following:

Pcoeff
0.5 -0.58585 0.4959593 -0.401004
0.5 -0.325472 -0.280609 0.7518821
0.5 0.1952834 -0.678681 -0.501255
0.5 0.716039 0.4633304 0.1503764

The numbers in the second column in this table are the coefficients needed to cal-
culate a linear regression for the four rates of P we input. The third column provides 
the coefficients for a quadratic regression, and the final column contains the coeffi-
cients needed to calculate a cubic regression. In the code we provided in Appendices 
1 and 2, the numbers in the second column (linear) are the "PosCoefGrade1", the 
numbers in the third column are the "PosCoefGrade2", and the numbers in the final 
column are the "PosCoefGrade3". To obtain the NegCoefGrade1, NegCoefGrade2, 
and NegCoefGrade3, we multiplied each column by (-1).

Now that we have our linear, quadratic, and cubic regression coefficients, our next 
step will be to read in our data and print it out to check that it has been read in correctly.
**** Reading data: Data Wheat is available in attached CSV file ****; 
Data Wheat;
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Infile "C:\Experiment 1 Data Wheat.CSV" dlm="," firstobs=3 ;
Informat Soil$ 10. ;
Input Year Soil N P Rep Yield ; Datalines;

Run;

The next step is to insert the Proc GLIMMIX code for this data with four fixed-
effect factors. In this first set of code, there will be only main effects. The order of 
the variables in the Class statement is particularly important. For our SAS code that 
generates the coefficients, P must follow all other fixed variables. If Year, Soil, or N 
had different numbers of levels, then their order would also be important. Since they 
all have the same number of levels (two), their order is not important except that they 
must be listed prior to P.
ODS Select CovParms Tests3 Contrasts; Proc GLIMMIX data = Wheat;

class Year Soil N P Rep ;
model Yield = Year Soil N P ;

random Rep(Year Soil);
Run;

Our code for the three (linear, quadratic, and cubic) contrasts for the main effect of 
P follow. We use the coefficients from Columns 2, 3, and 4, respectively for each of 
these contrasts. The code for the linear effect of P is:

contrast "Linear P" P -0.58585 -0.325472 0.1952834 0.716039;

The words "Linear P" comprise a user-chosen title to describe the effect being 
tested. Following the closed quotation marks is P which tells SAS that all calcula-
tions will be done on this effect. The linear coefficients follow the P and the ";" ends 
the statement. Similarly, we calculate the quadratic and cubic effects as follows:

contrast "Quadratic P" P 0.4959593 -0.280609 -0.678681 0.4633304;
contrast "Cubic P" P -0.401004 0.7518821 -0.501255 0.1503764;

We insert a run statement after the final contrast statement and combine our 
Proc GLIMMIX code from above.
ODS Select CovParms Tests3 Contrasts; 
Proc GLIMMIX data = Wheat;

class Year Soil N P Rep ;
model Yield = Year Soil N P ;
random Rep(Year Soil);
contrast "Linear P" P -0.58585 -0.325472 0.1952834 0.716039;
contrast "Quadratic P" P 0.4959593 -0.280609 -0.678681 0.4633304;
contrast "Cubic P" P -0.401004 0.7518821 -0.501255 0.1503764;

Run;

In addition to the standard Proc GLIMMIX output, running this code will result 
in the following output for these three Contrast statements.
Contrasts
Label Num DF Den DF F Value Pr > F
Linear P 1 52 25.94 <0.0001
Quadratic P 1 52 3.06 0.0860
Cubic P 1 52 0.44 0.5093

Now, we need to delete the last run statement and add our SAS code for the two-
way interactions. Everything except the new contrast statements follows:
ODS Select CovParms Tests3 Contrasts; Proc GLIMMIX data = Wheat;
class Year Soil N P Rep ;
model Yield = Year Soil N P

Year*Soil Year*N Year*P Soil*N Soil*P N*P ;
random Rep(Year Soil);
contrast "Linear P" P -0.58585 -0.325472 0.1952834 0.716039; contrast 
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"Quadratic P" P 0.4959593 -0.280609 -0.678681 0.4633304; contrast 
"Cubic P" P -0.401004 0.7518821 -0.501255 0.1503764;

Now we need to construct and add the contrast statements for all 2-way interac-
tions involving P.
contrast "Year × P Linear" Year*P

-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

Because we are analyzing the linear effect of P for the Year × P interaction, in 
the first line of code, after the title of our interaction within quotation marks, we 
insert the code Year*P to direct SAS to apply the coefficients to this interaction. The 
first line of coefficients are from the second column of the Proc IML output because 
this is a linear effect. These coefficients correspond to the code "PosCoefGrade1" in 
Appendices 1 and 2. The second line of coefficients are the coefficients in the first line 
multiplied by (-1) and these correspond to "NegCoefGrade1". Note that the ";" follows 
the second line of coefficients. We could have put these three lines of code without 
carriage returns as follows:
contrast "Year × P Linear" Year*P 

-0.58585 -0.325472 0.1952834 0.716039
 0.58585 0.325472 -0.1952834 -0.716039;

which is equivalent to the statement
*&PosCoefGrade1 &NegCoefGrade1; when using the SAS Macro code;

However, we recommend using the separate lines to facilitate finding errors in code.
If we add all of our contrast statements for 2-way interactions involving P, then 

we will have the following code.
ODS Select CovParms Tests3 Contrasts; 
Proc GLIMMIX data = Wheat;

class Year Soil N P Rep ;
model Yield = Year Soil N P

Year*Soil Year*N Year*P Soil*N Soil*P N*P;
random Rep(Year Soil);
contrast "Linear P" P -0.58585 -0.325472 0.1952834 0.716039;
contrast "Quadratic P" P 0.4959593 -0.280609 -0.678681 0.4633304; 
contrast "Cubic P" P -0.401004 0.7518821 -0.501255 0.1503764; 
contrast "Year × P Linear" Year*P

-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

* First line is the original linear coefficients from Proc IML output;
*Second line is the Proc IML linear coefficients multiplied by -1;
*Note that P must come after Soil in the Class statement for this to 
calculate properly;
*&PosCoefGrade1 &NegCoefGrade1;
contrast "Year × P Quadratic" Year*P

0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

*&PosCoefGrade2 &NegCoefGrade2 ;
contrast "Year × P Cubic" Year*P

-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

*&PosCoefGrade3 &NegCoefGrade3 ;
contrast "Soil × P Linear" Soil*P

-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

contrast " Soil × P Quadratic" Soil*P
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

contrast "Soil × P Cubic" Soil*P
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

contrast "N × P Linear" N*P



602 Appendix A 

-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

contrast "N × P Quadratic" N*P
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

contrast "N × P Cubic" N*P
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

As noted above, and for all other interactions, note that in the Class statement, 
P must have followed whatever fixed effect(s) that comprise the interaction, in this 
case Year, Soil, and N. This is because we calculated these coefficients as follows:

For P, we used the coefficients generated by Proc IML, and for Year we used +1, 
-1, for Year 1 and Year 2, respectively. Note that when you are using rates, such as 0, 50, 
150, and 250, SAS will assign the coefficients to these rates from lowest to highest rate. 
For Year 1 or Year 2, SAS will assign the coefficients 1 -1 alphabetically so Year 1 will 
correspond to 1 and -1 to Year 2. Had the treatment been month, and the two months 
in question January and August, then 1 would have been assigned to August and -1 
would have been assigned to January. The output follows for all of the main effects 
and two-way interaction contrasts that include P as one of the factors:

Contrasts
Label Num DF Den DF F Value Pr > F
Linear P 1 41 40.42 < 0.0001
Quadratic P 1 41 4.77 0.0347
Cubic P 1 41 0.69 0.4117
Year × P Linear 1 41 5.76 0.0210
Year × P Quadratic 1 41 1.93 0.1725
Year × P Cubic 1 41 0.09 0.7648
Soil × P Linear 1 41 16.60 0.0002
Soil × P Quadratic 1 41 0.07 0.7880
Soil × P Cubic 1 41 0.00 0.9877
N × P Linear 1 41 0.98 0.3280
N × P Quadratic 1 41 0.18 0.6710
N × P Cubic 1 41 0.52 0.4729

Note that now by adding the two-way interactions, the linear, quadratic, and cubic responses to the main 
effect of P changed because the denominator degrees of freedom decreased from 52 to 41.

Based on the order of variables in the Class statement, we calculated the 8 coef-
ficients for the Year × P interaction using the following table.
Phosphorus fertilizer rates

Year 
treatment

Year 
coefficient

kg P ha-1

0 50 150 250 Sum of 
coefficientsCoefficients for linear response to P

-0.58585 -0.325472 0.1952834 0.716039 0.0000004
Coefficients for Year × P linear interaction

Year 1 1 -0.58585 -0.325472 0.1952834 0.716039 0.0000004
Year 2 -1 0.58585 0.325472 -0.1952834 -0.716039 -0.0000004

Sum of
coefficients 0 0.00000 0.000000 0.00000000 0.00000 0.0000000

The table above shows how we multiplied the P coefficients by the Year coeffi-
cients to obtain the coefficients used in the SAS code for the linear response to P in 
the Year × P interaction.
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Note that the sum of the coefficients in the rows for Year (Year 1 and Year 2) do not sum 
exactly to 0. However, they are extremely close to 0. In order to ensure that the contrasts are 
calculated correctly, it is important not to round off the coefficients generated by Proc IML.

If the Class statement would have had P listed before Year, then we would have 
calculated our coefficients using the following table:

P fertilizer Year coefficients

kg ha-1
Coefficients for
linear response 

to P

Year 1
1

Year 2
-1

0 -0.5858500 -0.5858500 0.5858500
50 -0.3254720 -0.3254720 0.3254720
150 0.1952834 0.1952834 -0.1952834
250 0.7160390 0.7160390 -0.7160390
Sum of 
coefficients 0.0000004 0.0000004 0.0000004

From this table, we could have run the following program to calculate the linear 
response to P fertilizer for the Year × P Interaction: Notice that P is listed before Year 
in the Class statement below.
Proc GLIMMIX data = Wheat; 

class Soil N P Year Rep ; 
model Yield = Year Soil N P

Year*Soil Year*N Year*P Soil*N Soil*P N*P ;
random Rep(Year Soil);
contrast " Year × P Linear" Year*P

-0.5858500 0.5858500
-0.3254720 0.3254720
0.1952834 -0.1952834
0.7160300 -0.7160300

Run;

Our output for the contrast Year × P Linear follows:

Contrasts
Label Num DF Den DF F Value Pr > F
Year × P Linear 1 45 5.76 0.0206

The output is the same as previously when P came after instead of before Year 
in the Class statement. The values can be calculated correctly either way. (Verify this 
on your own.) However, the researcher needs to be aware of the order of variables 
in the Class statement so he/she can properly order the coefficients in the SAS code.

As long as the coefficients are listed in an order that is in agreement with the 
variables in the Class statement, then the contrast will be calculated correctly.

Next, we calculate the coefficients for the three-way single degree of freedom 
interactions that include P, beginning with the Year × Soil × P interaction.

Beginning with Year and Soil, we assign the following coefficients: 
Year 1 = +1
Year 2 = -1
Black Soil = +1
Chestnut Soil = -1
We have a simple table with +1 and -1 being the coefficients on the row and 

+1 and -1 being the coefficients on the column. Multiplying the Year × Soil coef-
ficients we get the following 4 coefficients: 1, -1, -1, 1 shown in yellow in the 
following table.
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Year Year Soil
Coefficients Black Chestnut

Soil coefficients Sum of coefficients
1 -1 0

Year 1 1 1 -1 0
Year 2 -1 -1 1 0
Sum of coefficients 0 0 0 0

The numbers shaded in yellow are the products of the Year × Soil coefficients, and 
the sums in the bottom row are of the two rows immediately above the bottom, and in the 
final column, the sums are of the two columns immediately to the left of the final column.

The coefficients 1, -1, -1, and 1 are then placed in the rows with the P linear coef-
ficients forming the columns (we placed P after Year and Soil in the Class statement) 
to calculate the contrast for the linear response to P in the Year × Soil x P interaction.

Year × Soil Coefficients for linear response of P linear
Coefficients  -0.58585  -0.325472  0.1952834  0.71603  Sum
1 -0.58585 -0.325472 0.1952834 0.716039 -0.0000004
-1 0.58585 0.325472 -0.1952834 -0.716039 0.0000004
-1 0.58585 0.325472 -0.1952834 -0.716039 0.0000004
1 -0.58585 -0.325472 0.1952834 0.716039 -0.0000004
Sum 0.00000 0.000000 0.0000000 0.00000 0.0000000

The numbers shaded in yellow are the products of the coefficients for the lin-
ear response to P in the Year × Soil × P interaction. These are the numbers that we 
will use as coefficients in the SAS code for the Contrast statement that calculates 
the linear response to P in each of our three-way interactions. The coefficients for 
the quadratic and cubic responses to P are calculated similarly. The following code 
calculates linear, quadratic, and cubic responses to P in each three-way interaction 
involving P as a factor.
Proc GLIMMIX data=Wheat;

class Year Soil N P Rep;
model Yield=Year Soil N P
Year*Soil Year*N Year*P Soil*N Soil*P N*P 
Year*Soil*N Year*Soil*P Year*N*P Soil*N*P;

random Rep(Year Soil);
**** Year × Soil × P three way interaction contrasts ****;
contrast "Year × Soil × P Linear" Year*Soil*P

0.58585 0.325472 -0.1952834 -0.716039
-0.58585 -0.325472 0.1952834 0.716039
-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

contrast "Year × Soil × P Quadratic" Year*Soil*P
-0.4959593 0.280609 0.678681 -0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

contrast "Year × Soil × P Cubic" Year*Soil*P
0.401004 -0.7518821 0.501255 -0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

contrast "Year × N × P Linear" Year*N*P
0.58585 0.325472 -0.1952834 -0.716039
-0.58585 -0.325472 0.1952834 0.716039
-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

contrast "Year× N × P Quadratic" Year*N*P
-0.4959593 0.280609 0.678681 -0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

contrast "Year × N × P Cubic" Year*N*P
0.401004 -0.7518821 0.501255 -0.1503764
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-0.401004 0.7518821 -0.501255 0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

contrast "Soil × N × P Linear" Soil*N*P
0.58585 0.325472 -0.1952834 -0.716039
-0.58585 -0.325472 0.1952834 0.716039
-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

contrast "Soil × N × P Quadratic" Soil*N*P
-0.4959593 0.280609 0.678681 -0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

contrast "Soil × N × P Cubic" Soil*N*P
0.401004 -0.7518821 0.501255 -0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

Run;

The results for the contrasts of each three-way interaction follow.
Contrasts
Label Num DF Den DF F Value Pr > F
Year × Soil × P Linear 1 31 22.49 < 0.0001
Year × Soil × P Quadratic 1 31 0.02 0.8847
Year × Soil × P Cubic 1 31 0.45 0.5053
Year × N × P Linear 1 31 0.74 0.3955
Year × N × P Quadratic 1 31 0.44 0.5118
Year × N × P Cubic 1 31 0.58 0.4536
Soil × N × P Linear 1 31 2.70 0.1103
Soil × N × P Quadratic 1 31 0.07 0.7970
Soil × N × P Cubic 1 31 11.79 0.0017

To finish the exercise, it is necessary to calculate the three single degree of free-
dom contrasts for the four way interaction Year × Soil × N × P. For this set of contrasts, 
we will provide the detail for calculating the coefficients for the cubic response of P 
for this four-way interaction. From our calculations for the coefficients used in the 
three-way interactions, we know that the coefficients for the Year × Soil interaction 
are 1, -1, -1, and 1. To obtain the coefficients for the three-way Year × Soil × N inter-
action, we place these four coefficients as rows and for N, add 1 and -1 as columns, 
giving us the following table.

Year × Soil coefficients N coefficients Sum of coefficients

1 -1

1 1 -1 0

-1 -1 1 0

-1 -1 1 0

1 1 -1 0

Sum of coefficients 0 0 0

By adding the factor N which had two levels, we have evolved from four coeffi-
cients for the Year × Soil two-way interaction to eight coefficients for the Year × Soil × 
N three-way interaction. The coefficients which are the product of the rows and col-
umns in the above table are 1, -1, -1, 1, -1, 1, 1, and -1. To obtain our coefficients for the 
four-way interaction, we build a new table using these 8 coefficients as the rows and 
(since we are calculating the cubic response to P rates) using the cubic coefficients 
for our rates of P generated previously by Proc IML as the columns. The results are 
in the following table.
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Y × S × N Cubic coefficients for P from Proc IML Sum of coefficients
coefficients

-0.401004 0.7518821 -0.501255 0.1503764 -0.0000005
1 -0.401004 0.7518821 -0.501255 0.1503764 -0.0000005
-1 0.401004 -0.7518821 0.501255 -0.1503764 0.0000005
-1 0.401004 -0.7518821 0.501255 -0.1503764 0.0000005
1 -0.401004 0.7518821 -0.501255 0.1503764 -0.0000005
-1 0.401004 -0.7518821 0.501255 -0.1503764 0.0000005
1 -0.401004 0.7518821 -0.501255 0.1503764 -0.0000005
1 -0.401004 0.7518821 -0.501255 0.1503764 -0.0000005
-1 0.401004 -0.7518821 0.501255 -0.1503764 0.0000005

The coefficients necessary to calculate the significance of the Year × Soil × N × P 
Cubic interaction are those in yellow:

Getting back to the code we provided in Appendix 2, to calculate the signifi-
cance of this interaction, we have the following groups:

-0.401004 0.7518821 -0.501255 0.1503764: "PosCoefGrade3"
0.401004 -0.7518821 0.501255 -0.1503764: "NegCoefGrade3"
0.401004 -0.7518821 0.501255 -0.1503764: "NegCoefGrade3"
-0.401004 0.7518821 -0.501255 0.1503764: "PosCoefGrade3"
0.401004 -0.7518821 0.501255 -0.1503764: "NegCoefGrade3"
-0.401004 0.7518821 -0.501255 0.1503764: "PosCoefGrade3"
-0.401004 0.7518821 -0.501255 0.1503764: "PosCoefGrade3"
0.401004 -0.7518821 0.501255 -0.1503764: "NegCoefGrade3"

We would calculate the linear (PosCoefGrad1" and "NegCoefGrade1") and qua-
dratic coefficients (PosCoefGrad2" and "NegCoefGrade2") similarly, but using the 
second and third columns, respectively, from the Proc IML output instead of the 
fourth column which we used to generate these cubic coefficients.

The code for calculating the linear, quadratic, and cubic responses to P for the 
four-way interaction Year × Soil × N × P is the following:
Proc GLIMMIX data = Wheat; 
class Year Soil N P Rep ; 
model Yield = Year Soil N P

Year*Soil Year*N Year*P Soil*N Soil*P N*P
Year*Soil*N Year*Soil*P Year*N*P Soil*N*P 
Year*Soil*N*P;

random Rep(Year Soil);
contrast "Year × Soil × N × P Linear" Year*Soil*N*P

-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039
0.58585 0.325472 -0.1952834 -0.716039
-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039
-0.58585 -0.325472 0.1952834 0.716039
-0.58585 -0.325472 0.1952834 0.716039
0.58585 0.325472 -0.1952834 -0.716039;

contrast "Year × Soil × N × P Quadratic" Year*Soil*N*P
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304
-0.4959593 0.280609 0.678681 -0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
0.4959593 -0.280609 -0.678681 0.4633304
-0.4959593 0.280609 0.678681 -0.4633304;

contrast "Year × Soil × N × P Cubic" Year*Soil*N*P
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764
0.401004 -0.7518821 0.501255 -0.1503764
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-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
-0.401004 0.7518821 -0.501255 0.1503764
0.401004 -0.7518821 0.501255 -0.1503764;

Run;

The output for the linear, quadratic, and cubic responses to P for the four-way inter-
action follows:

Contrasts

Label Num DF Den DF F Value Pr > F

Year × Soil × N × P Linear 1 28 0.50 0.4870

Year × Soil × N × P Quadratic 1 28 0.01 0.9436

Year × Soil × N × P Cubic 1 28 5.90 0.0218

The complete Proc GLIMMIX SAS code for calculating all two-way, three-way, and four-
way interactions in the ANOVA as well as the linear, quadratic, and cubic responses to P for 
all contrasts involving P, can be easily obtained putting together the programs shown above.
Note: using Proc GLIMMIX, instead of the CONTRAST statement you can also use the 
LSMESTIMATE statement because it provides a mechanism for obtaining hypothesis tests among the 
least squares means. However, in contrast to the hypotheses tested with the ESTIMATE or CONTRAST 
statements, the LSMESTIMATE statement enables to form linear combinations of the least squares 
means, rather than linear combination of fixed-effects parameter estimates and/or random-effects solutions

Exercise 2

Using the data set (Wheat) shown in Section 1 from this chapter, calculate the Mean 
Squared Error (MSE) for Rep (Year Soil) for the complete model using two approaches.

Approach 1.

Proc GLIMMIX provides the covariance parameter estimate (or variance) for Rep 
(Year Soil). Referring to Expected Mean Squares, we know the following:
MSE for Rep (Year Soil) = Residual variance + (P × N) × [Variance 
(Rep (Year × Soil)] 
Where P and N equal the number of levels of P and N, respectively. 
P × N = 4 × 2 = 8
MSE for Rep (Year Soil) = Residual variance + (8) × [Variance (Rep 
(Year × Soil)]

We know from the Proc GLIMMIX output that Variance (Rep (Year × Soil) = 
0.000292 and we know that the residual variance is 0.008036. Thus,
MSE for Rep (Year × Soil) = 0.008036 + 8(0.000292)
MSE for Rep (Year × Soil) = 0.008036 + 0.002336
MSE for Rep (Year × Soil) = 0.010372

Approach 2.

We can also use our LSD output in Appendix 2, Example 3, from Proc GLIMMIX to 
calculate the MSE for Rep (Year Soil). One column of output is the average standard 
error of the differences between two means (ASED) which is labeled "AvStdErr" in 
the Proc GLIMMIX output. We know that the MSE for Rep (Year Soil) is used to 
calculate the standard error of the difference (SED) between two Year, Soil, or Year × 
Soil means, so we can use that formula in reverse.
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Using the output for Year × Soil (we could also have used Year or Soil because, as 
stated above, the ASED for each of these was calculated from the same Mean Square 
as was used to calculate the LSD for Year × Soil).

The actual formula for the SED is SED = [2(MSE for Rep (Year Soil))/n](1/2) where n = num-
ber of observations for each Year × Soil mean. This number n is calculated from 2 reps, 4 rates 
of P, and 2 rates of N so n = 2 × 4 × 2 = 16 observations for calculating each Year × Soil mean. 
Substituting ASED (which is AvStdErr from the Proc GLIMMIX output) for SED, this gives us:
0.036011 = [2(MSE for Rep (Year Soil))/16]

(1/2)

Squaring both sides of the equation gives us:
0.0012967 = 2(MSE for Rep (Year Soil)/16
0.0012967 = MSE for Rep (Year Soil)/8
8 × 0.0012967 = MSE for Rep (Year Soil)

MSE for Rep (Year Soil) = 0.0103736, which is equal to 5 decimal places to the 
answer from our Approach 1.

Calculating LSD values

Now, using the residual variance (MSE) or the mean square of Rep (Year Soil) if appropri-
ate, let's calculate the LSD for all effects and interactions and compare these LSDs with 
the LSDs calculated with Proc GLIMMIX, which are provided in the output in Appendix 
2. Remember, the LSD is a mechanism for doing all possible t tests with a mean variance. 
However, the Pdiff option in SAS actually calculates all possible t tests and does so not 
based on a mean variance, but based on the actual pooled variance of the difference of the 
two means being tested. Thus, using the Pdiff option is a more precise way of carrying 
out the intentions of the LSD so we recommend, if the results differ, using the significance 
results from the Pdiff option rather than from the LSD. Still, when we publish, it is useful 
to provide measures of variability in our tables and figures. The LSD is a useful statistic to 
use for this purpose. While the actual probabilities may not be exactly equal, comparisons 
among every single pair of means for significance using the LSD will almost always yield 
the same significance results (that is, significant or not significant) as the Pdiff option. For 
rare instances when the Pdiff option identifies a comparison as significant or not signifi-
cant and this determination is different from that of the LSD, the author can point this out 
and indicate that it is the result from the Pdiff options on which conclusions are based, but 
that the LSD value is presented because it is still a useful estimate of variation.
For our calculations, we need to remember that the general formula for calculating 
the LSD is for t (a, df) (and we will conduct our calculations at a = 0.05),
LSD = t [(2 × variance)/n]

(1/2)

Where n = the number of observations for each mean. 
We will show the calculations for calculating the LSDs for comparing means of N, 
Soil, Year × Soil, and Year × N and results for all effects and interactions are provided 
in the table below. We need to recall that each effect had the following number of 
levels.
Year = 2
Soil = 2
N = 2
P = 4
Rep = 2

First for N.
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The two N means were comprised of 2 × 2 × 4 × 2 = 32 observations (number of 
levels of Year, Soil, P, and Rep multiplied together), so n = 32.

Based on our Proc GLIMMIX output from Appendix 2, we see that the denom-
inator df associated with N = 28. This tells us two things. First, the appropriate 
variance is the residual (error mean square) since there are 28 df associated with this 
value. Second, to find the appropriate t value, we need to use df = 28.

We see from the SAS output that the mean square error = 0.008036 and from a t table, 
we find that t = 2.048. (We can also use the following function in Excel to obtain our t value:
=tinv (0.05, 28) = 2.048407

We now have the information to calculate the LSD which is: 
LSD = 2.048407 [2 x 0.008036)/32](1/2)

LSD = 0.045906. This compares with 0.04591 calculated by using the ASED esti-
mated by Proc GLIMMIX.

LSD for comparing means of Soil.

This is equivalent to the LSD for comparing means of Year because there are two levels 
of Year and two levels of Soil, and to calculate the LSD for year or soil, the variance is 
the same and it is the MSE for Rep (Year Soil) = 0.010372 as calculated above.

As for N, there are 32 observations that make up each Soil mean (Year × N × P × 
Rep) = 2 × 2 × 4 × 2 = 32.

Unlike the example of calculating an LSD for comparing N means, where 
denominator df = 28, we see from our Proc GLIMMIX output that for Soil (or Year), 
the denominator df = 4. Thus, we must use the mean square for Rep (Year Soil), 
which we already calculated as 0.010372, in our LSD formula and we must use 4 df 
for finding our t value which is t = 2.776445. Thus,
LSD = 2.776445 [2 × 0.010372)/32]

(1/2)

LSD = 2.776445 × 0.0254597
LSD = 0.0706903.

This compares with 0.07069 calculated in Appendix 2 by using the ASED esti-
mated by Proc GLIMMIX.

LSD for comparing means of the Year × Soil interaction.

There are 16 observations that comprise each Year × Soil mean (Levels of N × P × 
Rep) = 2 × 4 × 2 = 16. We see that the denominator df = 4 for Year × Soil, thus we will 
use the mean square error of Rep (Year Soil) as the variance, which is 0.010372 and 
from the t table, we find that t = 2.77645. Thus,
LSD = 2.776445 × [2 × 0.010372/16]

(1/2)

LSD = 2.776445 × 0.0360069
LSD = 0.09997129 

which compares with 0.09997 calculated by using the ASED estimated by Proc GLIMMIX.

LSD for comparing means of the Year × N interaction.
There are 16 observations that comprise each Year × N mean (Levels of Soil × P × Rep) = 2 × 4 ×
2 = 16. We see that the denominator df = 28 for Year × N, thus we will use the residual 
as the variance = 0.008036, and from the t table, we find that t = 2.048407. Thus,
LSD = 2.048407 [2 × 0.008036/16]

(1/2)

LSD = 2.048407 × 0.0316938
LSD = 0.0649219
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which compares with 0.06796 calculated in Appendix 2, Example 3 by using the 
ASED estimated by Proc GLIMMIX.

The table below shows that our LSD values were nearly identical to 5 decimal 
places, whether calculated in Appendix 2 by the ASED or here using the variance. In 
most cases, it should be fine to use the correct estimated variance in order to estimate 
the LSD. To be most certain of precision, it would be safest to use Proc GLIMMIX and 
the ASED method we provided in Appendix 2.

Effect Variance ASED Den df† Critical t‡ LSD by LSD by

Year (Y) 0.010372 0.02546 4 2.77645 0.07069 0.07069
Soil (S) 0.010372 0.02546 4 2.77645 0.07069 0.07069
Nitrogen (N) 0.008036 0.02241 28 2.04841 0.04590 0.04591
Phosphorus (P) 0.008036 0.02546 28 2.04841 0.06492 0.06492
Y × S 0.010372 0.03601 4 2.77645 0.09997 0.09997
Y × N 0.008036 0.03318 28 2.04841 0.06492 0.06796
Y × P 0.008036 0.04574 28 2.04841 0.09181 0.09369
S × N 0.008036 0.03318 28 2.04841 0.06422 0.06796
S × P 0.008036 0.04574 28 2.04841 0.09181 0.09369
N × P 0.008036 0.04482 28 2.04841 0.09181 0.09181
Y × S × N 0.008036 0.04752 28 2.04841 0.09181 0.09734
Y × S × P 0.008036 0.13355 28 2.04841 0.12984 0.13355
Y × N × P 0.008036 0.06400 28 2.04841 0.12984 0.13109
S × N × P 0.008036 0.06400 28 2.04841 0.12984 0.13109
Y × S × N × P 0.008036 0.09089 28 2.04841 0.18363 0.18629
† Denominator degrees of freedom from the ANOVA for the fixed effects
‡ Critical t value at 0.05/2 significance level and for Den df.
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Chapter 8: The Analysis of 
combined experiments

Philip M. Dixon, Kenneth J. Moore, and Edzard van Santen

Answers to Review Questions, with short explanations

1. In this study, modeling environment effects and block effects as fixed effects or as random 
effects leads to the same inference about the difference between the two types of tillage.

True. The design is balanced.  The only differences would arise if a random ef-
fect variance is estimated as 0.

2. If conclusions about the effect of tillage in a new location are desired, you should 
use narrow sense inference.

False. Narrow sense inference makes conclusions about the locations and years 
used in the study

3. Narrow sense conclusions about the effects of tillage usually have smaller 
standard errors than do broad sense conclusions.  

True.  The variance for broad sense conclusions includes an additional non-neg-
ative variance component.

4. To obtain narrow-sense conclusions, omit the treatment by environment 
interaction from the model.

False.  You should model the treatment by environment interaction as a fixed 
effect.  Omitting it from the model assumes no interaction and pools the interac-
tion with the plot-plot variation.

5. To obtain broad-sense conclusions, model the treatment by environment 
interaction as a random effect.

True.  
6. Broad-sense confidence intervals for the difference between two types of tillage 
will be based on T distributions with 18 degrees of freedom.

False.  The degrees of freedom for the confidence interval will be the df of the 
treatment by environment interaction, which is (18 – 1)(3-1) = 34
7. The combined analysis across environments requires that plot-plot variation be 
pooled across environments.

False.  Although error variances are often pooled, they do not need to be.
8. The combined analysis across environments requires that variation between 
blocks be pooled across environments.

False. Although block variances are often pooled, they do not need to be.   If 
blocks are considered a fixed effect, pooling is not an issue.

9. The 18 environments are actually 6 locations, each studied for 3 years.  Tillage 
effects are expected to vary somewhat among locations because of different soil 
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characteristics.  Tillage effects are not expected to vary among years at the same 
location. In this case, subdividing the treatment by environment interaction will 
have minimal effect on the conclusions about the average treatment effect.

True. Although the location by treatment variance component is expected to be 
somewhat different from the year by treatment variance component, this appears 
to have minimal effect on conclusions about the average treatment effect.  
10. Imagine that the three tillage treatments are three levels of some quantitative factor, 
e.g. amount of soil disturbance.  The data for each environment could be analyzed 
using a regression model with a linear effect of soil disturbance.  It is possible to 
construct a combined analysis of those regression models in all 18 environments.

True.  The model for the combined analysis includes a random regression slope 
by environment interaction.

Chapter 8 Answers to Exercises

1.	 An experiment was conducted to assess the effect of a fungicide treatment on 
soybean yield (kg ha-1).  It was conducted as an on-farm strip-plot trial with six 
pairs of side-by-side strips of which one randomly received fungicide treatment.  
The experiment was repeated at eleven farms (environments).  The data were 
extracted from a much larger dataset provided by the Iowa Soybean Association 
and are provided in the on-farm soybean dataset in the supplemental materials.

a. 	Analyze the experiment separately for each environment.
	 See SAS code – first block of code

b.	 Evaluate the error variances to determine whether or not they may be 
considered homogeneous. 

	See SAS code – second block of code using repeated statement and reml to 
compare variances across environments
Various approaches are possible, including Levene's Test, a Likelihood Ratio 

Test, and comparison of AIC, AICc, or BIC statistics.  All are consistent and indicate 
that the model with separate variances for each location is superior to using a single 
pooled estimate.  The inference is that variances are heterogeneous.  

c.	 Conduct a combined analysis of variance assuming environment and replication 
to be random factors and treatment as fixed.

See SAS code – third block of code
The F ratio for treatment is 13.78.  Since the probability associated with its occurrence 

is quite small (0.0038) the effect of fungicide treatment is considered to be significant.  
d.	 Interpret the results of the experiment with respect to the efficacy of fungicide 
treatment in improving soybean yield.

The mean difference between fungicide and untreated soybean over all envi-
ronments was approximately 1.65 kg ha-1 (se = 0.44 kg ha-1).  To be economical on 
average for represented environments, the per-ha cost of application would need to 
be less than the market value of 1.65 kg of soybeans.  
2. 	 Antonio Mallorino at Iowa State University has studied corn response to P fertilization 
since 2002.  The Prate.csv file contains 13 years of data from the SouthWest research farm.  
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The design is a RCBD with three blocks of five plots each.  Four P rates (0, 28, 56, and 112 
lb ac-1) were used; the 0 level was replicated twice in each block.  Blocks and plots can be 
considered independent across years.  The response variable is yield in bu ac-1.  

Consider years to be a fixed factor and P rate (Prate) to be a continuous variable.  

a. What sort of polynomial model is appropriate to describe yield response to Prate?  Linear?  
quadratic? With one coefficient for all years or coefficients that differ among years?
See SAS code - first block of code.  A reasonable model has a quadratic response 

to P fertilization, with different linear coefficients but a single quadratic term.  The 
quadratic × year interaction is not significant, but when that term is omitted, the 
quadratic effect, the linear effect, and the linear × year interaction are all significant.  
There is no evidence of lack of fit in either the interaction or main effect terms.

Now consider years to be a random factor.  Fit a quadratic model that allows the 
intercept and linear Prate coefficient to vary between years (but the quadratic coef-
ficient is constant).  
b. What is the equation that predicts yield as a function of Prate for a year not in 

the data set, e.g, 2015? 

	 See SAS code - second block of code, Solution for Fixed Effects in the output.  
Yield = 170.2 + 0.36 × Prate - 0.00214 × Prate2.  

c. 	What is the year-to-year variability in the linear Prate slope?  Use the standard 
deviation to 	 describe that variability.

See SAS code - second block of code.  The slope variance is the UN(2,2) param-
eter in the SAS output.  We want its square root,  = 0.12.

d. Examine the residuals.  Is it appropriate to use yield as the response variable, or 
should yield be transformed?
See SAS code - third block of code.  A plot of residuals against predicted values 

indicates no need to transform the response variable.  The plot shows no evidence 
of lack of fit and no change in residual variability with increases in predicted values.

e. Apply Levene's test to the residuals to assess whether the error variance differs among years.
See SAS code - fourth block of code.  There is evidence of different error vari-

ances in different years.  The p-value is 0.022.

f. Refit the model used in parts b-e with year-specific error variances.   Do the 
answers to questions b and c change much?
See SAS code - fifth block of code.  The answers are slightly different, but the 

differences are small.   When fit with year-specific error variances, the equation is:

Yield = 170.3 + 0.35 × Prate - 0.00202 × Prate2
The variability in the slope between years is 0.11. 
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Chapter 9: Analysis of Covariance                                                                

Kevin S. McCarter

Sample SAS code for examples and exercises                                                        
dm “log;clear”;
options nodate pageno=1;

ods html close;
ods html;

*Create the SAS datasets for the examples and exercises;                           

data example_1;
input grp $ y x @@;
datalines;
A 71.3 12.7 A 63.4 13.3 A 55.0  8.6 A 54.0  7.3 A 54.6  8.2
A 47.7  6.4 A 49.1  7.0 A 88.1 14.2 A 59.4  8.6 A 70.5 10.7
B 63.0  7.6 B 80.9 13.4 B 78.7 10.3 B 85.1 14.8 B 78.5 13.6
B 73.0 13.5 B 53.0  5.3 B 76.3  9.9 B 68.7  9.4 B 84.9 14.2
;
run;
data example_2;
input grp $ y x @@;
datalines;
A 69.2 10.8 A  59.4 10.7 A 70.2 13.1 A 52.3  6.6 A 61.0 9.6 
A 73.9 13.4 A  57.1  7.3 A 64.9 10.0 A 68.2 13.8 A 75.1 14.8 
B 89.9 17.4 B 101.3 21.2 B 73.2 13.4 B 96.4 20.1 B 86.4 17.6 
B 74.8 14.8 B  81.2 17.2 B 97.3 20.2 B 99.4 21.9 B 79.3 13.9 
;
run;

data example_3;
input grp $ y x @@;
datalines;
A 81.2 14.1 A 58.7  8.8 A 47.4  5.7 A 49.4  5.5 A 66.1  9.1 
A 72.5 14.6 A 71.1 12.7 A 53.5  6.2 A 62.2  8.0 A 68.5 12.4 
B 56.6 15.9 B 57.5 17.9 B 75.6 21.6 B 68.5 19.9 B 58.0 14.1 
B 57.7 15.1 B 62.6 16.8 B 73.9 20.6 B 77.0 20.9 B 44.4 13.0 
;
run;

data example_4;
input grp $ y x @@;
datalines;
A 55.1  8.2 A 67.1 11.0 A 73.6 14.8 A 64.6  9.3 A 76.4 13.8 
A 45.5  5.3 A 47.3  6.4 A 57.4  6.6 A 78.5 12.9 A 61.9  8.4 
B 61.7  9.5 B 56.3 11.3 B 54.2 12.0 B 68.0  9.8 B 58.5 12.6 
B 59.2 10.5 B 60.8 10.7 B 68.2  9.8 B 52.7 13.1 B 78.5  6.4 
;
run;
data exercise_1;
input grp $ y x @@;
datalines;
A  49.4  5.2 A  72.2 13.2 A 61.6  9.2 A  63.4 11.3 A  71.0 12.3 
A  49.6  7.2 A  56.6  8.3 A 61.1  6.7 A  66.1  9.7 A  71.9 12.0 
B  95.3 20.2 B  96.7 20.5 B 75.8 12.5 B 102.6 21.9 B  78.5 15.3 
B 101.4 20.8 B 100.8 21.3 B 88.2 17.2 B  79.1 14.4 B 108.0 21.2
;
run;
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data exercise_2;
input grp $ y x @@;
datalines;
A 56.7  7.0 A 46.3  5.7 A 71.2 14.6 A 69.0 11.9 A 59.7 10.8 
A 59.8 10.2 A 60.1  8.1 A 66.8 10.8 A 72.5 14.5 A 57.6  7.9 
B 70.3 10.5 B 78.0 12.8 B 63.1  9.4 B 57.1  6.6 B 68.7 11.3 
B 70.4  9.5 B 73.3  9.4 B 61.7  6.8 B 73.7 11.9 B 77.4 11.6 
;
run;

data exercise_3;
input grp $ y x @@;
datalines;
A 54.8  8.9 A 54.6  8.3 A 52.5 10.0 A 68.2 12.6 A 59.6  9.4 
A 76.8 13.2 A 56.3  7.9 A 71.2 15.0 A 62.0  9.2 A 68.0 13.8 
B 54.4 14.7 B 55.8 19.1 B 69.4 20.3 B 51.7 15.3 B 67.2 21.3 
B 43.9 12.2 B 71.6 21.6 B 66.7 20.5 B 42.4 13.4 B 55.7 15.9 
;
data exercise_4;
input grp $ y x @@;
datalines;
A 73.9 14.4 A 46.7  6.1 A 48.9  6.3 A 83.0 14.6 A 80.7 15.0 
A 73.1 12.1 A 54.8  7.2 A 53.4  7.3 A 79.3 13.5 A 60.6 11.5 
B 68.6  9.6 B 66.9  9.9 B 53.5  5.0 B 79.6 13.3 B 82.0 13.2 
B 72.4 12.2 B 67.6  9.9 B 77.4 13.4 B 70.6 10.0 B 75.4 11.1 
;
run;

data exercise_5;
input grp $ y x @@;
datalines;
A 70.9 12.6 A 71.8 13.5 A 61.0 10.9 A 71.4 13.9 A 56.9  6.4 
A 55.8  9.1 A 62.1  7.4 A 80.8 13.2 A 54.8  8.8 A 50.8  5.6 
B 52.4 12.3 B 57.9 10.7 B 68.9 11.1 B 62.7 11.6 B 62.4 10.2 
B 78.5  6.5 B 55.0 14.8 B 79.2  6.8 B 82.6  5.5 B 51.6 13.7 
;
run;
* Create SAS macro for performing analyses;                                                          

%macro analyze_data(DATASET);

footnote1 “Chapter 9 - Analysis of Covariance - Sample SAS Code for 
Examples and Exercises”;
footnote2 “Analysis of Dataset &DATASET”;

* Print listing of dataset;                                                                         

title1 “Listing of the Dataset &DATASET”;
proc print data=&DATASET;
run;

* Calculate summary statistics and perform exploratory analysis;                                     

title1 “Summary of the Dataset”; 
proc means data=&DATASET mean std; 
var y x; 
by grp; 
run;

title1 “Boxplots of Response Variable Y for Each Group”;
proc sgplot data=&DATASET;
vbox y / group=grp extreme ;
run;

title1 “Boxplots of Covariate X for Each Group”;
proc sgplot data=&DATASET;
hbox x / group=grp extreme ;
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run;

title1 “Scatter Plot of Response Y vs Covariate X”;
proc sgplot data=&DATASET;
scatter y=y x=x / group=grp;
run;

* ANCOVA which forces the relationship between the response and the 
covariate to be the same across treatment groups;                                                                                 

ods graphics on;

title1 “ANOVA To Compare Mean of Response Variable Y Across Groups”;
proc mixed data=&DATASET;
class grp;
model y = grp ;
lsmeans grp / pdiff cl ;
run;

title1 “ANOVA To Compare Mean of Covariate X Across Groups”;
proc mixed data=&DATASET;
class grp;
model x = grp ;
run;

title1 “ANCOVA To Compare Mean of Response Variable Y Across Groups, 
Adjusting for X”;
title2 “Parallel Slopes Model”;
proc mixed data=&DATASET;
class grp;
model y = x grp ;
lsmeans grp / pdiff cl ;
run;
* Using PROC GLM to produce the ANCOVA plot, which is not produced by 
PROC MIXED;

* Comment the following ODS SELECT statement out to see all of the 
output from GLM;
* Leave it uncommented to output only the ANCOVA plot;

ods select ANCOVAPlot; 

title1 “ANCOVA To Compare Mean of Response Variable Y Across Groups, 
Adjusting for X”;
title2 “Parallel Slopes Model”;
proc glm data=&DATASET;
class grp;
model y = x grp ;
lsmeans grp / pdiff cl ;
run;
quit;

* ANCOVA which allows for the relationship between the response and 
the covariate to differ across treatment groups. ;                                                                                

ods graphics on;

title1 “ANCOVA To Compare Mean of Y Across Groups, Adjusting for X”;
title2 “Non-Parallel Slopes”;
proc mixed data=&DATASET;
class grp;
model y = x grp x*grp ;
lsmeans grp / pdiff cl ;
run;
* Using PROC GLM to obtain the ANCOVA plot;

* Comment the following ODS SELECT statement out to see all of the 
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output from GLM;
* Leave it uncommented to output only the ANCOVA plot;

ods select ANCOVAPlot; 

title1 “ANCOVA To Compare Mean of Y Across Groups, Adjusting for X”;
title2 “Non-Parallel Slopes”;
proc glm data=&DATASET;
class grp;
model y = x grp x*grp ;
lsmeans grp / pdiff cl ;
run;
quit;

%mend;

* Choose dataset to analyze by uncommenting the appropriate line below. ;                            
* To uncomment a line, remove the asterisk at the beginning of the line. ;                           

%analyze_data(DATASET=example_1);
*%analyze_data(DATASET=example_2);
*%analyze_data(DATASET=example_3);
*%analyze_data(DATASET=example_4);

*%analyze_data(DATASET=exercise_1);
*%analyze_data(DATASET=exercise_2);
*%analyze_data(DATASET=exercise_3);
*%analyze_data(DATASET=exercise_4);
*%analyze_data(DATASET=exercise_5);
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Chapter 10: Analysis of Repeated 
Measures for the biological and 

agricultural sciences 

Salvador A. Gezan and Melissa Carvalho

Answers to True or False

1.	 Spatial correlation is a type of correlation that is present between observations 
that belong to the same experimental unit. (F)

2.	 If we have missing data, then repeated measures analysis can't be used. (F)

3.	 Combining all data from several time points into a single analysis will provide 
greater statistical power than analyzing every time point separately. (T)

4.	 For random effects, the statistical inferences are valid only for the levels that are 
considered in the corresponding factor. (F)

5.	 The compound symmetry (CS) structure is the simplest structure that can model 
some form of correlation. (T)

6.	 The AR(1) and ARH(1) structures do not need identical intervals between 
measurements. (F)

7.	 Comparing two models by using the residual log-likelihood (ReslogL) requires 
that the fixed effects between models are the same. (T)

8.	 The F- and t-tests from a repeated measures analysis are no longer valid tests 
because their degrees of freedom are incorrect. (F)

9.	 Linear mixed models can only be used on normally distributed response variables. (T)

GenStat
“ Set working directory - change to location of your data file “
SET [WORKINGDIRECTORY=’C:/…/CodeChapter’]

“ Read and display data from working directory “
FILEREAD [NAME=’HEIGHT.TXT’; IMETHOD=read] FGROUPS=7(yes),no,no
FSPREADSHEET  Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht

“ Single point measurement analysis “
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; CONDITION=Time.
EQ.1984
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; CONDITION=Time.
EQ.1985
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; CONDITION=Time.
EQ.1986
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; CONDITION=Time.
EQ.1987
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; CONDITION=Time.
EQ.1988
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; CONDITION=Time.
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EQ.1989
VCOMPONENTS [FIXED=Initial+Blk+Trt; FACTORIAL=9] 
REML [PRINT=model,components,deviance,waldTests; FMETHOD=automatic; 
MVINCLUDE=*; METHOD=AI;\
 MAXCYCLE=20] Ht; 
VPLOT [RMETHOD=all] fittedvalues,normal,halfnormal,histogram
VPREDICT [PRINT=description,prediction,se,avesed] CLASSIFY=Trt; 
LEVELS=*; PARALLEL=*
RESTRICT Plot,Spp,Stk,Prep,Trt,Blk,Time,Initial,Ht; 

“ Fitting different error structures with factor trt “
VCOMP [FIXED=Initial+Time+Time.Blk+Trt+Time.Trt; CADJUST=none; 
FACTORIAL=9] Plot.Time;\
 CONSTRAIN=positive
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=identity; ORDER=1; 
HETEROGENEITY=none;     “ ID error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=uniform; ORDER=1; 
HETEROGENEITY=none;      “ CS error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=ar; ORDER=1; 
HETEROGENEITY=none;           “ AR(1) error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=diagonal; ORDER=1; 
HETEROGENEITY=none;     “ DIAG error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=uniform; ORDER=1; 
HETEROGENEITY=outside;   “ CSH error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=ar; ORDER=1; 
HETEROGENEITY=outside;        “ ARH(1) error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=banded; ORDER=5; 
HETEROGENEITY=outside;    “ TOEPH error structure “
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=unstructured; ORDER=*; 
HETEROGENEITY=none; “ UN error structure “
REML [PRINT=model,components,deviance,waldTests; MAXCYCLE=20; 
FMETHOD=automatic; MVINCLUDE=explanatory,\
yvariate; METHOD=AI] Ht
VAIC [PRINT=deviance,aic,bic] 

“ Detailed model UN error structure - full treatment structure “
VCOMP [FIXED=Initial+Time+Time.Blk+Time*Spp*Stk*Prep; CADJUST=none; 
FACTORIAL=17] Plot.Time;\
 CONSTRAIN=positive
VSTRUCTURE [Plot.Time] FACTOR=Time; MODEL=unstructured; ORDER=*; 
HETEROGENEITY=none;  “ UN error structure “
REML [PRINT=model,components,deviance,waldTests; MAXCYCLE=20; 
FMETHOD=automatic; MVINCLUDE=explanatory,\
yvariate; METHOD=AI] Ht
VAIC [PRINT=deviance,aic,bic]

SAS
ods graphics on;

* Read data - change directory to location of your data file;
data HEIGHT;
  infile ‘C:\...\CodeChapter\HEIGHT.TXT’ firstobs=2 expandtabs;
  input Plot $ Spp $ Stk $ Prep $ Trt $ Blk $ Time $ Initial Ht;
run;
proc print data=HEIGHT (obs=20); run;

* Sorting data by Time;
proc sort data=HEIGHT;
  by Time;
run;

* Single point measurement analysis;
proc mixed data=HEIGHT plots=studentpanel;
  by Time;
  class Trt Blk Time;
  model Ht = Initial Blk Trt / ddfm=KR;
  lsmeans Trt / cl;
run;

* Fitting different error structures with factor trt;
proc mixed data=HEIGHT;
  class Plot Spp Stk Prep Trt Blk Time;
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  model Ht = Initial Time Time(Blk) Trt Time*Trt / ddfm=KR;
  *repeated Time / subject=Plot type=VC;            * ID error 
structure; 
  *repeated Time / subject=Plot type=CS;            * CS error 
structure;
  *repeated Time / subject=Plot type=AR(1);         * AR(1) error 
structure;
  *repeated Time / subject=Plot type=TOEP;        * TOEP error structure;
  *repeated Time / subject=Plot type=VC group=Time; * DIAG error structure;
  *repeated Time / subject=Plot type=CSH;         * CSH error structure;
  *repeated Time / subject=Plot type=ARH(1);      * ARH(1) error structure;
  *repeated Time / subject=Plot type=TOEPH;       * TOEPH error structure;
  repeated Time / subject=Plot type=UN;          * UN error structure;
  lsmeans Time*Trt / slice=Time;
run;

* Detailed model UN error structure - full treatment structure;
proc mixed data=HEIGHT plots=studentpanel;
  class Plot Spp Stk Prep Trt Blk Time;
  model Ht = Initial Time Time(Blk) Spp|Stk|Prep Time*Spp Time*Stk 
Time*Prep Time*Spp*Stk Time*Spp*Prep Time*Stk*Prep Time*Spp*Stk*Prep / 
ddfm=KR residual outp=resid;
  repeated Time / subject=Plot type=UN r rcorr;
run;

ods graphics off;

R
# Read data - change directory to location of your data file;
rm(list=ls())
setwd(“C:/Users/sgeza/Desktop/Repeatead/Paper_AGJournal_2016/
Revisions_Nov2016”)

# Loading libraries
library(nlme)
library(lsmeans)

# Reading data
datasoy<-data.frame(Soybean[Soybean$Year==’1988’,])
head(datasoy)

# Defining factors
datasoy$Plot<-as.factor(datasoy$Plot)
datasoy$Variety<-as.factor(datasoy$Variety)
datasoy$Time<-as.factor(datasoy$Time)
str(datasoy)

# Some EDA
boxplot(weight~Time,data=datasoy)
hist(datasoy$weight)
datasoy$logweight<-log(datasoy$weight)
boxplot(logweight~Time,data=datasoy)

# Obtaining subsets of the data by Time
T14<-datasoy[datasoy$Time==14,]

# Single point measurement analysis
modelSingle<-lm(logweight~Variety,data=T14)  
summary(modelSingle)
anova(modelSingle)
plot(modelSingle)
lsmeans(modelSingle,~Variety)

# ID error structure 
rstruct<-varIdent(form=~1)
rheter<-varIdent(form=~1)
modID<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)
#summary(modID)
#anova(modID)
#plot(modID)
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# CS error structure 
rstruct<-corCompSymm(form=~Time|Plot)
rheter<-varIdent(form=~1)
modCS<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)

# CSH error structure
rstruct<-corCompSymm(form=~Time|Plot)
rheter<-varIdent(form=~1|Time)
modCSH<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)

# DIAG error structure
rstruct<-varIdent(form=~1)
rheter<-varIdent(form=~1|Time)
modDIAG<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)

# AR(1) error structure 
rstruct<-corAR1(form=~1|Plot)
rheter<-varIdent(form=~1)
modAR1<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)

# ARH(1) error structure 
rstruct<-corAR1(form=~1|Plot)
rheter<-varIdent(form=~1|Time)
modARH1<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)

# US error structure (with extra output)
rstruct<-corSymm(form=~1|Plot)
rheter<-varIdent(form=~1|Time)
modUS<-gls(logweight~Time+Variety+Time:Variety,
           correlation=rstruct,weights=rheter,data=datasoy)

# Comparing US against ARH(1) using Likelihood ratio test
anova(modUS,modARH1)

# Output for selected model
#mod<-modID
#mod<-modCS
#mod<-modCSH
#mod<-modDIAG
#mod<-modAR1
mod<-modARH1
#mod<-modUS
output<-summary(mod)      
anova(mod,type=’marginal’)   # Marginal ANOVA table
anova(mod,type=’sequential’) # Sequential ANOVA table
attr(output$apVar,”Pars”)    # Variance components 
(logL<-2*mod$logLik)         # log-likelihood value
(AIC<-output$AIC)            # AIC
(BIC<-output$BIC)            # BIC
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Chapter 11: The Design and Analysis 
of Long-term Rotation Experiments

Roger William Payne

Appendix 1. Genstat commands to analyze the potato yields from 
the Westmaas experiment.
IMPORT [PRINT=*] 'wmpotato.xlsx'
" try various random models "
CAPTION 'Split-plot nested within years'; STYLE=meta
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen] Year/Block/Wholeplot
REML [PRINT=components] Yield
VAIC [PRINT=deviance,aic,sic,dfrandom]
VRACCUMULATE [PRINT=*] 'Split-plot nested within years'
CAPTION 'Nested split-plot, different residual variance each year';\
  STYLE=meta
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENT=Year]\
  Year/Block/Wholeplot
REML [PRINT=components] Yield
VAIC [PRINT=deviance,aic,sic,dfrandom]
VRACCUMULATE [PRINT=*] 'Nested split-plot meta analysis'
" Nested split plot: power-distance correlation structure over years"
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen] Year/Block/Wholeplot
VARIATE Ycoord; VALUES=Year
VSTRUCTURE [TERM=Year.Block.Wholeplot; COORDINATES=Ycoord] power;\
  FACTOR=Year
REML [PRINT=*] Yield
VRACCUMULATE [PRINT=*] 'Nested split-plot and power distance'
" Nested split plot with different residual variance in each year
  and power-distance correlation structure over years "
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENT=Year]\
  Year/Block/Wholeplot
VSTRUCTURE [TERM=Year.Block.Wholeplot; COORDINATES=Ycoord] power;\
  FACTOR=Year
REML [PRINT=*] Yield
VRACCUMULATE [PRINT=*]\
  'Nested split-plot meta analysis and power distance'
" Nested split plot with different residual variances
  and variance components "
FORMULA [VALUE=Block/Wholeplot] differentvcterms
VRMETA [EXPERIMENTSFACTOR=Year; RANDOM=Random] 77,79,80...88;\
  LOCALTERMS=differentvcterms
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENTS=Year] #Random
REML [PRINT=*; MVINCLUDE=explanatory] Yield
VRACCUMULATE 'Meta analysis with different variance components'
" use split plot with different residual variance in each year "
CAPTION 'Nested split-plot, different residual variance each year';\
  STYLE=meta
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENT=Year]\
  Year/Block/Wholeplot
REML [PRINT=wald] Yield
" drop unnecessary fixed terms "
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen-Year.Rotation.Nitrogen;\
  EXPERIMENTS=Year] Year/Block/Wholeplot
REML [PRINT=wald; MVINCLUDE=explanatory; WORKSPACE=100] Yield
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen - Year.Rotation.Nitrogen\
  - Rotation.Nitrogen; EXPERIMENTS=Year] Year/Block/Wholeplot
REML [PRINT=wald; MVINCLUDE=explanatory; WORKSPACE=100] Yield
VCOMPONENTS [FIXED=Year*Rotation*Nitrogen - Year.Rotation.Nitrogen\
  - Rotation.Nitrogen - Year.Nitrogen; EXPERIMENTS=Year]\
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  Year.Block/Wholeplot
REML [PRINT=wald; MVINCLUDE=explanatory; WORKSPACE=100] Yield
" predicted means for Nitrogen,
  and for Year.Rotation with a summary of the sed's "
VDISPLAY [PRINT=means; PTERMS=Nitrogen+Year.Rotation]
" to print the means with all the sed's, set option PSE
VDISPLAY [PRINT=means; PTERMS=Year.Rotation; PSE=alldifferences]"
PEN 11...15; LINESTYLE=1,8,1,8,1;\
  CSYMBOL='crimson','darkviolet','violet','darkblue','royalblue';\
  CLINE='crimson','darkviolet','violet','darkblue','royalblue';\
  CFILL='crimson','darkviolet','violet','darkblue','royalblue';\
  SYMBOL='circle','heavycross','diamond','heavyplus','square'
VGRAPH [METHOD=linesandpoints] Year; GROUP=Rotation;\
  PENS=!(11...15); YTITLE='Yield (t ha~^{-1})';\
  TITLE='Estimated mean yield of potato for rotations and years'

Appendix 2. Genstat output for the potato yields from the Westmaas 
experiment.

   2  IMPORT [PRINT=*] ‘wmpotato.xlsx' 
   3  " try various random models " 
   4  CAPTION ‘Split-plot nested within years'; STYLE=meta 

Split-plot nested within years

    5  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen] Year/Block/Wholeplot 
   6  REML [PRINT=components] Yield 

Estimated variance components

Random Term     Component  S.e.

Year.Block 1.407 1.403

Year.Block.Wholeplot 7.079 1.893

Residual variance model

Term Model(order) Parameter Estimate  s.e.

Residual Identity Sigma2 5.195 0.701

   7  VAIC [PRINT=deviance,aic,sic,dfrandom] 
 
	 Deviance	  			   950.43
	 Akaike information coefficient	  	 956.43
	 Schwarz Bayes information coefficient	 965.75
	 d.f. of random model			   3

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

    8  VRACCUMULATE [PRINT=*] ‘Split-plot nested within years' 
   9  CAPTION ‘Nested split-plot, different residual variance each year';\ 
  10    STYLE=meta 
 
Nested split-plot, different residual variance each year

   11  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENT=Year]\ 
  12    Year/Block/Wholeplot 
  13  REML [PRINT=components] Yield

Estimated variance components
Random term     component s.e.

Year.Block 2.12 1.17

Year.Block.Wholeplot 0.91 0.52
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Residual model for each experiment
Experiment factor: Year 

Experiment Term Factor Model(order) Parameter Estimate s.e.

77.00 Residual Identity Variance 0.819 0.352

79.00 Residual Identity Variance 2.684 1.149

80.00 Residual Identity Variance 1.344 0.588

81.00 Residual Identity Variance 5.231 2.558

82.00 Residual Identity Variance 4.538 1.873

83.00 Residual Identity Variance 1.988 0.887

84.00 Residual Identity Variance 4.013 1.660

85.00 Residual Identity Variance 5.415 2.185

86.00 Residual Identity Variance 14.28 5.56

87.00 Residual Identity Variance 58.21 22.43

88.00 Residual Identity Variance 12.90 5.25
 
  14  VAIC [PRINT=deviance,aic,sic,dfrandom] 
 
	 Deviance	  				    891.60
	 Akaike information coefficient		  917.60
	 Schwarz Bayes information coefficient	 957.98
	 d.f. of random model	  		  13
 
Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

  15  VRACCUMULATE [PRINT=*] ‘Nested split-plot meta analysis' 
  16  " Nested split plot: power-distance correlation structure over years" 
  17  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen] Year/Block/Wholeplot 
  18  VARIATE Ycoord; VALUES=Year 
  19  VSTRUCTURE [TERM=Year.Block.Wholeplot; COORDINATES=Ycoord] power;\ 
  20    FACTOR=Year 
  21  REML [PRINT=*] Yield 
  22  VRACCUMULATE [PRINT=*] ‘Nested split-plot and power distance' 
  23  " Nested split plot with different residual variance in each year 
 -24    and power-distance correlation structure over years " 
  25  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENT=Year]\ 
  26    Year/Block/Wholeplot 
  27  VSTRUCTURE [TERM=Year.Block.Wholeplot; COORDINATES=Ycoord] power;\ 
  28    FACTOR=Year 
  29  REML [PRINT=*] Yield 
  30  VRACCUMULATE [PRINT=*]\ 
  31    ‘Nested split-plot meta analysis and power distance' 
  32  " Nested split plot with different residual variances 
 -33    and variance components " 
  34  FORMULA [VALUE=Block/Wholeplot] differentvcterms 
  35  VRMETA [EXPERIMENTSFACTOR=Year; RANDOM=Random] 77,79,80...88;\ 
  36    LOCALTERMS=differentvcterms 
  37  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENTS=Year] #Random 
  38  REML [PRINT=*; MVINCLUDE=explanatory] Yield 
  39  VRACCUMULATE ‘Meta analysis with different variance components' 
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Accumulated summary of REML random models
Deviance AICSIC Random d.f.

Split-plot nested within years 950.43 956.43 965.75 3
Nested split-plot meta analysis 891.60 917.60 957.98 13

Nested split-plot and power distance 950.38 958.38 970.80 4

Nested split-plot meta analysis and power distance 891.57 919.57 963.06 14

Meta analysis with different variance components 852.53 918.53 1021.02 33

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
 40  " use split plot with different residual variance in each year " 
  41  CAPTION ‘Nested split-plot, different residual variance each year';\ 
  42    STYLE=meta
Nested split-plot, different residual variance each year
  43  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen; EXPERIMENT=Year]\ 
  44    Year/Block/Wholeplot 
  45  REML [PRINT=wald] Yield 
Tests for fixed effects
Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
Year 851.65 10 85.45 10.4 <0.001
Rotation 106.93 4 26.73 27.0 <0.001
Nitrogen 110.56 2 55.28 58.1 <0.001
Year.Rotation 154.93 40 3.75 22.8 <0.001
Year.Nitrogen 29.16 20 1.27 48.7 0.242
Rotation.Nitrogen 15.43 8 1.93 58.1 0.073
Year.Rotation.Nitrogen 108.45 80 1.19 40.6 0.271
 
Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f F statistic d.d.f. F pr

Year.Rotation.Nitrogen 108.45 80 1.19 40.6 0.271

Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters.
   46  " drop unnecessary fixed terms " 
  47  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen-Year.Rotation.Nitrogen;\ 
  48    EXPERIMENTS=Year] Year/Block/Wholeplot 
  49  REML [PRINT=wald; MVINCLUDE=explanatory; WORKSPACE=100] Yield 

Tests for Fixed Effects
Sequentially adding terms to fixed model
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
Year 796.16 10 79.79 10.7 <0.001
Rotation 91.94 4 22.98 32.8 <0.001
Nitrogen 83.70 2 41.85 128.4 <0.001
Year.Rotation 117.01 40 2.92 25.3 0.003
Year.Nitrogen 29.67 20 1.36 88.3 0.166
Rotation.Nitrogen 10.34 8 1.29 128.4 0.253
 Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f.F statistic d.d.f. F pr
Year.Rotation 117.01 40 2.92 25.3 0.003
Year.Nitrogen 29.67 20 1.36 88.3 0.166
Rotation.Nitrogen 10.34 8 1.29 128.4 0.253

Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters.
   50  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen - Year.Rotation.Nitrogen\ 
  51    - Rotation.Nitrogen; EXPERIMENTS=Year] Year/Block/Wholeplot 
  52  REML [PRINT=wald; MVINCLUDE=explanatory; WORKSPACE=100] Yield 
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Tests for fixed effects
Sequentially adding terms to fixed model
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
Year 783.23 10 78.49 10.8 <0.001
Rotation 89.66 4 22.42 34.0 <0.001
Nitrogen 83.72 2 41.86 136.7 <0.001
Year.Rotation 112.76 40 2.82 26.9 0.003
Year.Nitrogen 29.82 20 1.38 95.6 0.154
 
Dropping individual terms from full fixed model
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
Year.Rotation 112.76 40 2.82 26.9 0.003
Year.Nitrogen 29.82 20 1.38 95.6 0.154
	
Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters.

   53  VCOMPONENTS [FIXED=Year*Rotation*Nitrogen - Year.Rotation.Nitrogen\ 
  54    - Rotation.Nitrogen - Year.Nitrogen; EXPERIMENTS=Year]\ 
  55    Year.Block/Wholeplot 
  56  REML [PRINT=wald; MVINCLUDE=explanatory; WORKSPACE=100] Yield 

Tests for fixed effects
Sequentially adding terms to fixed model
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
Year 780.43 10 78.21 10.8  <0.001
Rotation 92.68 4 23.17 32.6 <0.001
Nitrogen 83.21 2 41.60 142.0  <0.001
Year.Rotation 117.47 40 2.93 27.0 0.002

Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
Nitrogen 83.21 2 41.60 142.0 <0.001
Year.Rotation 117.47 40 2.93 27.0  0.002

Message: denominator degrees of freedom for approximate F-tests are calculated 
using algebraic derivatives ignoring fixed/boundary/singular variance parameters.
   57  " predicted means for Nitrogen, 
 -58    and for Year.Rotation with a summary of the sed's " 
  59  VDISPLAY [PRINT=means; PTERMS=Nitrogen+Year.Rotation] 

Table of predicted means for Nitrogen

Nitrogen N1 N2 N3

43.37 45.03 45.65
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Standard error of differences: 0.2585 

Table of predicted means for Year.Rotation

Rotation Year IIf III IIIf IV IVf

77 23.44 21.92 21.87 25.01 21.20

79 39.44 46.62 45.74 49.50 44.35

80 40.53 41.14 40.90 41.54 42.48

81 30.37 38.04 39.45 39.43 38.14

82 39.75 40.49 42.95 45.53 45.63

83 31.14 36.55 39.53 37.96 37.61

84 54.59 57.67 56.63 58.40 58.99

85 51.48 47.80 49.79 52.54 49.75

86 48.21 51.03 54.58 51.48 52.99

87 42.99 48.76 41.56 45.67 51.85

88 54.28 62.76 64.41 58.52 62.46

Standard errors of differences

Average 2.483

Maximum 3.686

Minimum 1.413

Average variance of differences: 6.366 

Standard error of differences for same level of factor:
		   Year	  Rotation
Average:	  1.978	  2.524
Maximum:	  3.686	  3.527
Minimum:	  1.413	  2.074

	  
Average variance of differences: 
		   4.328	  6.529	  

 
  60  " to print the means with all the sed's, set option PSE 
 -61  VDISPLAY [PRINT=means; PTERMS=Year.Rotation; PSE=alldifferences]" 
  62  PEN 11...15; LINESTYLE=1,8,1,8,1;\ 
  63    CSYMBOL='crimson','darkviolet','violet','darkblue','royalblue';\ 
  64    CLINE='crimson','darkviolet','violet','darkblue','royalblue';\ 
  65    CFILL='crimson','darkviolet','violet','darkblue','royalblue';\ 
  66    SYMBOL='circle','heavycross','diamond','heavyplus','square' 
  67  VGRAPH [METHOD=linesandpoints] Year; GROUP=Rotation;\ 
  68    PENS=!(11...15); YTITLE='Yield (t ha~^{-1})';\ 
  69    TITLE='Estimated mean yield of potato for rotations and years' 

Appendix 3. ASReml-R commands to analyze potato yields from 
the Westmaas experiment.

#'## Initialize
library(asreml4)
library(asremlPlus)
library(ggplot2)
library(knitr)
#knitr::spin(“Appendix1.v4.r")
options(width = 110)

#'## Load data, order it and create a 3 level nested Wholeplot factor
load(file = “wmpotato.rda")
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wmpotato <- with(wmpotato, wmpotato[order(Year,Block,Wholeplot,Subplot), ])
wmpotato$NWholeplot <- factor(rep(1:5, each=3, times=22))

#'## Try various random models
#'### Split plot within years
model1.asr <- asreml(Yield ~ Year*Rotation*Nitrogen, 
                      random = ~Year:Block/Wholeplot,
                      data = wmpotato)
summary(model1.asr)$varcomp
info.accumulate <- data.frame(Model = “Split-plot", 
                              infoCriteria(model1.asr),
                              stringsAsFactors = FALSE)

#'### Split plot with different residual variance in each year
model2.asr <- asreml(Yield ~ Year*Rotation*Nitrogen, 
                     random = ~Year:Block/Wholeplot,
                     residual = ~ idh(Year):Block:NWholeplot:Subplot,
                     data = wmpotato)
model2.asr <- update(model2.asr)
summary(model2.asr)$varcomp
info.accumulate <- rbind(info.accumulate,
                         data.frame(Model = “Split plot meta analysis", 
                                    infoCriteria(model2.asr),
                                    stringsAsFactors = FALSE))

#'### Split plot with EXP structure over years
model3.asr <- asreml(Yield ~ Year*Rotation*Nitrogen, 
                     random = ~Year:Block/Wholeplot,
                     residual = ~ exp(Year):Block:NWholeplot:Subplot,
                     data = wmpotato)
summary(model3.asr)$varcomp
info.accumulate <- rbind(info.accumulate,
                         data.frame(Model = “Split-plot and EXP", 
                                    infoCriteria(model3.asr),
                                    stringsAsFactors = FALSE))

#'### Split plot: different residual variance in each year & EXP 
structure
model4.asr <- asreml(Yield ~ Year*Rotation*Nitrogen, 
                    random = ~Year:Block/Wholeplot,
                     residual = ~ exph(Year):Block:NWholeplot:Subplot,
                     data = wmpotato)
model4.asr <- update(model4.asr)
summary(model4.asr)$varcomp
info.accumulate <- rbind(info.accumulate,
                   data.frame(Model = “Split-plot meta analysis and EXP", 
                                    infoCriteria(model4.asr),
                                    stringsAsFactors = FALSE))

dimnames(summary(model4.asr)$varcomp)

#'### Split plot with different residual variances and variance 
components
model5.asr <- asreml(Yield ~ Year*Rotation*Nitrogen, 
                     random = ~ idh(Year):Block/Wholeplot,
                     residual =   ~ idh(Year):Block:NWholeplot:Subplot,
                     data = wmpotato)
summary(model5.asr)$varcomp
vcnames <- rownames(summary(model5.asr)$varcomp)[1:22]
model5.asr <- setvarianceterms(model5.asr$call, terms = vcnames, 
                    bounds = “U", initial=0.01, ignore.suffices = FALSE)
model5.asr <- update(model5.asr)
summary(model5.asr)$varcomp
info.accumulate <- rbind(info.accumulate,
     data.frame(Model = “Meta analysis with different variance components", 
                        infoCriteria(model5.asr, bound.exclusions = “F"),
                        stringsAsFactors = FALSE))
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#'### Accumulated summary of REML information criteria
info.accumulate
#'### Use split plot with different residual variance in each year
wald(model2.asr, denDF = “algebraic")

#'## Drop unnecessary fixed terms
model2a.asr <- asreml(Yield ~ Year*Rotation*Nitrogen-Year:Rotation:Nitrogen, 
                     random = ~ Year:Block/Wholeplot,
                     residual = ~ idh(Year):Block:NWholeplot:Subplot,
                     data = wmpotato)
wald(model2a.asr, denDF = “algebraic")

model2b.asr <- asreml(Yield ~ Year*Rotation*Nitrogen-
Year:Rotation:Nitrogen -
                                      Rotation:Nitrogen, 
                      random = ~ Year:Block/Wholeplot,
                      residual =   ~ idh(Year):Block:NWholeplot:Subplot,
                      data = wmpotato)
wald(model2b.asr, denDF = “algebraic")

model2c.asr <- asreml(Yield ~ Year*Rotation*Nitrogen-
Year:Rotation:Nitrogen -
                        Rotation:Nitrogen - Year:Nitrogen, 
                      random = ~ Year:Block/Wholeplot,
                      residual =   ~ idh(Year):Block:NWholeplot:Subplot,
                      data = wmpotato)
wald(model2c.asr, denDF = “algebraic")

#'## Get predictions and plot
predict(model2c.asr, classify = “Nitrogen")$pvals
predYR <- predict(model2c.asr, classify = “Year:Rotation")$pvals
predYR

cols <- c(‘red','darkviolet','violet','darkblue','lightskyblue')
ggplot(data = predYR, 
       aes(x =Year, y=predicted.value, colour=Rotation, linetype=Rotation, 
       shape = Rotation)) + geom_point() + geom_line() + 
       labs(y = “Yield") + scale_color_manual(values = 
       cols) + scale_shape_manual(values = c(16,4,18,3,15))

Appendix 4. ASReml-R output from the analysis of potato yields 
from the Westmaas experiment.

Initialize
library(asreml4)
## Loading required package: Matrix
## Licensed to University of South Australia, serial number 402060331, 
expires 31-jan-2018, 373 days.
library(asremlPlus) 
library(ggplot2) 
library(knitr) 
#knitr::spin("Appendix1.v4.r") 
options(width = 110)

Load data, order it and create a 3 level nested Wholeplot factor
load(file = "wmpotato.rda") 
wmpotato <- with(wmpotato, wmpotato[order(Year,Block,Wholeplot,Subplot), ]) 
wmpotato$NWholeplot <- factor(rep(1:5, each=3, times=22))

Try various random models
Split plot within years
model1.asr <- asreml(Yield ~ Year*Rotation*Nitrogen,  
                      random = ~Year:Block/Wholeplot, 
                      data = wmpotato)
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## Model fitted using the gamma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:32 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -341.227       10.0174    165 15:55:32    0.0 
##  2      -332.725        7.9880    165 15:55:32    0.0 
##  3      -326.355        6.4141    165 15:55:32    0.0 
##  4      -324.012        5.5986    165 15:55:32    0.0 
##  5      -323.596        5.2382    165 15:55:32    0.0 
##  6      -323.590        5.1960    165 15:55:32    0.0 
##  7      -323.590        5.1952    165 15:55:32    0.0
summary(model1.asr)$varcomp
##                      component std.error  z.ratio bound %ch 
## Year:Block            1.407175 1.4026645 1.003216     P   0 
## Year:Block:Wholeplot  7.079126 1.8929384 3.739755     P   0 
## units(R)              5.195198 0.7005203 7.416198     P   0
info.accumulate <- data.frame(Model = "Split-plot",  
                              infoCriteria(model1.asr), 
                              stringsAsFactors = FALSE)
Split plot with different residual variance in each year
model2.asr <- asreml(Yield ~ Year*Rotation*Nitrogen,  
                     random = ~Year:Block/Wholeplot, 
                     residual = ~ idh(Year):Block:NWholeplot:Subplot, 
                     data = wmpotato)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:32 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -325.726           1.0    165 15:55:32    0.0 (2 restrained) 
##  2      -315.906           1.0    165 15:55:32    0.0 
##  3      -307.104           1.0    165 15:55:32    0.0 
##  4      -300.698           1.0    165 15:55:32    0.0 
##  5      -295.773           1.0    165 15:55:32    0.0 
##  6      -294.551           1.0    165 15:55:32    0.0 
##  7      -294.313           1.0    165 15:55:32    0.0 
##  8      -294.249           1.0    165 15:55:32    0.0 
##  9      -294.216           1.0    165 15:55:32    0.0 
## 10      -294.197           1.0    165 15:55:32    0.0 
## 11      -294.187           1.0    165 15:55:32    0.0 
## 12      -294.181           1.0    165 15:55:32    0.0 
## 13      -294.178           1.0    165 15:55:32    0.0
## Warning in asreml(Yield ~ Year * Rotation * Nitrogen, random = 
~Year:Block/Wholeplot, : Log-likelihood not 
## converged
## Warning in asreml(Yield ~ Year * Rotation * Nitrogen, random = 
~Year:Block/Wholeplot, : Some components 
## changed by more than 1% on the last iteration.
model2.asr <- update(model2.asr)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:32 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -294.176           1.0    165 15:55:32    0.0 
##  2      -294.176           1.0    165 15:55:32    0.0 
##  3      -294.176           1.0    165 15:55:32    0.0 
##  4      -294.175           1.0    165 15:55:32    0.0 
##  5      -294.175           1.0    165 15:55:32    0.0
summary(model2.asr)$varcomp
##                                        component std.error  z.ratio bound %ch 
## Year:Block                             2.1188142 1.1698023 1.811258   P 0.0 
## Year:Block:Wholeplot                   0.9225528 0.5212748 1.769801   P 0.5 
## Year:Block:NWholeplot:Subplot(R)       1.0000000        NA       NA      F 0.0 
## Year:Block:NWholeplot:Subplot!Year_77  0.8192466 0.3522389 2.325826      P 0.0 
## Year:Block:NWholeplot:Subplot!Year_79  2.6812820  1.1480199 2.335571     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_80  1.3431204  0.5869084 2.288467     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_81  5.1776315  2.5260176 2.049721     P 0.5 
## Year:Block:NWholeplot:Subplot!Year_82  4.5354571  1.8726148 2.421991     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_83  1.9832480  0.8836502 2.244381     P 0.1 
## Year:Block:NWholeplot:Subplot!Year_84  4.0128598  1.6612209 2.415609     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_85  5.4153625  2.1867447 2.476449     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_86 14.2810395  5.5608347 2.568147     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_87 58.1502751 22.4010672 2.595871     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_88 12.8700511  5.2352869 2.458328     P 0.1
info.accumulate <- rbind(info.accumulate, 
                         data.frame(Model = "Split plot meta analysis",  
                                    infoCriteria(model2.asr), 
                                    stringsAsFactors = FALSE))
## Warning in infoCriteria.asreml(model2.asr): The following bound terms 
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were discounted: 
##  Year:Block:NWholeplot:Subplot(R)
Split plot with EXP structure over years
model3.asr <- asreml(Yield ~ Year*Rotation*Nitrogen,  
                     random = ~Year:Block/Wholeplot, 
                     residual = ~ exp(Year):Block:NWholeplot:Subplot, 
                     data = wmpotato)
## Model fitted using the gamma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:32 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -340.831       10.0380    165 15:55:32    0.0 
##  2      -332.931        8.0998    165 15:55:32    0.0 
##  3      -326.549        6.4773    165 15:55:32    0.0 
##  4      -324.050        5.6183    165 15:55:32    0.0 
##  5      -323.597        5.2428    165 15:55:32    0.0 
##  6      -323.590        5.1963    165 15:55:32    0.0 
##  7      -323.590        5.1952    165 15:55:32    0.0
## Warning in asreml(Yield ~ Year * Rotation * Nitrogen, random = 
~Year:Block/Wholeplot, : Some components 
## changed by more than 1% on the last iteration.
summary(model3.asr)$varcomp
##                  component std.error      z.ratio bound  %ch 
## Year:Block       1.407182e+00 1.4026520 1.0032293744      P  0.0 
## Year:Block:Wholeplot      7.079156e+00 1.8933937 3.7388719187      P  0.0 
## Year:Block:NWholeplot:Subplot(R)    5.195228e+00 0.7006187 7.4151999388   P  0.0 
## Year:Block:NWholeplot:Subplot!Year!pow 1.090783e-05 0.1010570 0.0001079374    U 58.6
info.accumulate <- rbind(info.accumulate, 
                         data.frame(Model = "Split-plot and EXP",  
                                    infoCriteria(model3.asr), 
                                    stringsAsFactors = FALSE))
Split plot with different residual variance in each year and EXP structure
model4.asr <- asreml(Yield ~ Year*Rotation*Nitrogen,  
                     random = ~Year:Block/Wholeplot, 
                     residual = ~ exph(Year):Block:NWholeplot:Subplot, 
                     data = wmpotato)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:32 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -326.106            1.0   165 15:55:32    0.0 (2 restrained) 
##  2      -315.850           1.0    165 15:55:32    0.0 
##  3      -307.051           1.0    165 15:55:32    0.0 
##  4      -300.617           1.0    165 15:55:32    0.0 
##  5      -295.655           1.0    165 15:55:32    0.0 
##  6      -294.412           1.0    165 15:55:32    0.0 
##  7      -294.167           1.0    165 15:55:32    0.0 
##  8      -294.097           1.0    165 15:55:32    0.0 
##  9      -294.060           1.0    165 15:55:32    0.0 
## 10      -294.037           1.0    165 15:55:32    0.0 
## 11      -294.024           1.0    165 15:55:32    0.0 
## 12      -294.016           1.0    165 15:55:32    0.0 
## 13      -294.012           1.0    165 15:55:32    0.0
## Warning in asreml(Yield ~ Year * Rotation * Nitrogen, random = 
~Year:Block/Wholeplot, : Log-likelihood not 
## converged
## Warning in asreml(Yield ~ Year * Rotation * Nitrogen, random = 
~Year:Block/Wholeplot, : Some components 
## changed by more than 1% on the last iteration.
model4.asr <- update(model4.asr)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:32 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -294.009           1.0    165 15:55:32    0.0 
##  2      -294.009           1.0    165 15:55:33    0.0 
##  3      -294.008           1.0    165 15:55:33    0.0 
##  4      -294.007           1.0    165 15:55:33    0.0 
##  5      -294.007           1.0    165 15:55:33    0.0 
##  6      -294.007           1.0    165 15:55:33    0.0
summary(model4.asr)$varcomp
##                component  std.error   z.ratio bound %ch 
## Year:Block                              2.12260198  1.1684830 1.8165450     
P 0.0 
## Year:Block:Wholeplot                0.84472627  0.5064265  1.6680136    P 0.6 
## Year:Block:NWholeplot:Subplot(R)   1.00000000    NA       NA          F 0.0 
## Year:Block:NWholeplot:Subplot!Year!pow  0.06584539  0.1081466 0.6088532     U 0.2 
## Year:Block:NWholeplot:Subplot!Year_77   0.81429437  0.3493945 2.3305874     P 0.0 
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## Year:Block:NWholeplot:Subplot!Year_79   2.68405000  1.1469765 2.3401091     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_80   1.34566016  0.5892322 2.2837521     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_81   5.19119457  2.5411514 2.0428513     P 0.5 
## Year:Block:NWholeplot:Subplot!Year_82   4.51796149  1.8574883 2.4322961     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_83   2.11597580  0.9675121 2.1870277     P 0.1 
## Year:Block:NWholeplot:Subplot!Year_84   4.13956058  1.7259741 2.3983910     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_85   5.48604076  2.2146976 2.4771060     P 0.0 
## Year:Block:NWholeplot:Subplot!Year_86 14.41228320 5.5903544 2.5780625  P 0.0 
## Year:Block:NWholeplot:Subplot!Year_87  58.23033685  22.3474570   2.6056807   P 0.0 
## Year:Block:NWholeplot:Subplot!Year_88  13.12521093  5.3138979 2.4699780     P 0.1
info.accumulate <- rbind(info.accumulate, 
                         data.frame(Model = "Split-plot meta analysis and EXP",  
                                    infoCriteria(model4.asr), 
                                    stringsAsFactors = FALSE))
## Warning in infoCriteria.asreml(model4.asr): The following bound terms 
were discounted: 
##  Year:Block:NWholeplot:Subplot(R)
dimnames(summary(model4.asr)$varcomp)
## [[1]] 
##  [1] "Year:Block"                             "Year:Block:Wholeplot"                   
##  [3] "Year:Block:NWholeplot:Subplot(R)"        
"Year:Block:NWholeplot:Subplot!Year!pow" 
##  [5] "Year:Block:NWholeplot:Subplot!Year_77"   
"Year:Block:NWholeplot:Subplot!Year_79"  
##  [7] "Year:Block:NWholeplot:Subplot!Year_80"   
"Year:Block:NWholeplot:Subplot!Year_81"  
##  [9] "Year:Block:NWholeplot:Subplot!Year_82"   
"Year:Block:NWholeplot:Subplot!Year_83"  
## [11] "Year:Block:NWholeplot:Subplot!Year_84"   
"Year:Block:NWholeplot:Subplot!Year_85"  
## [13] "Year:Block:NWholeplot:Subplot!Year_86"   
"Year:Block:NWholeplot:Subplot!Year_87"  
## [15] "Year:Block:NWholeplot:Subplot!Year_88"  
##  
## [[2]] 
## [1] "component" "std.error" "z.ratio"   "bound"     "%ch"
Split plot with different residual variances and variance components
model5.asr <- asreml(Yield ~ Year*Rotation*Nitrogen,  
                     random = ~ idh(Year):Block/Wholeplot, 
                     residual =   ~ idh(Year):Block:NWholeplot:Subplot, 
                     data = wmpotato)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:33 2017 
##         LogLik        Sigma2     DF     wall    cpu 
##  1      -325.726            1.0    165 15:55:33    0.0 (13 restrained) 
##  2      -298.707           1.0    165 15:55:33    0.0 (6 restrained) 
##  3      -285.216           1.0    165 15:55:33    0.0 (6 restrained) 
##  4      -278.707           1.0    165 15:55:33    0.0 (7 restrained) 
##  5      -276.570           1.0    165 15:55:33    0.0 (8 restrained) 
##  6      -275.950           1.0    165 15:55:33    0.0 (5 restrained) 
##  7      -275.800           1.0    165 15:55:33    0.0 (1 restrained) 
##  8      -275.795           1.0    165 15:55:33    0.0 (1 restrained) 
##  9      -275.795           1.0    165 15:55:33    0.0 
## 10      -275.795           1.0    165 15:55:33    0.0
summary(model5.asr)$varcomp
##                      component  std.error    z.ratio bound %ch 
## Year:Block!Year_7   2.321580e+00  3.3536595 0.69225281     P   0 
## Year:Block!Year_79  2.601849e+00  4.1605472 0.62536224     P   0 
## Year:Block!Year_80  8.148340e-01  1.5000504 0.54320444     P   0 
## Year:Block!Year_81  1.028062e+01 16.8785574 0.60909369     P   0 
## Year:Block!Year_82  3.782552e-07         NA         NA     B   0 
## Year:Block!Year_83  1.311193e-01  0.8770122 0.14950686     P   0 
## Year:Block!Year_84  3.149464e+00  4.8633243 0.64759494     P   0 
## Year:Block!Year_85  3.782552e-07         NA         NA     B   0 
## Year:Block!Year_86  5.980740e-06         NA         NA     B   0 
## Year:Block!Year_87  4.368026e-05         NA         NA     B   0 
## Year:Block!Year_88  2.563949e-01  3.5621790 0.07197699     P   0 
## Year:Block:Wholeplot!Year_77    3.782552e-07 NA             NA       B     0 
## Year:Block:Wholeplot!Year_79  7.705295e-01  1.2528742   0.61500946    P   0 
## Year:Block:Wholeplot!Year_80    7.394376e-01  0.8696140    0.85030549      P   0 
## Year:Block:Wholeplot!Year_81   7.413468e+00  5.7598117   1.28710245     P   0 
## Year:Block:Wholeplot!Year_82    2.701891e-01  1.3808788   0.19566460      P   0 
## Year:Block:Wholeplot!Year_83  1.617967e+00  1.6054174   1.00781705      P   0 
## Year:Block:Wholeplot!Year_84   5.980740e-06      NA       NA          B   0 
## Year:Block:Wholeplot!Year_85 5.980740e-06  NA     NA        B   0 
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## Year:Block:Wholeplot!Year_86     1.481352e-05       NA     NA              B    0 
## Year:Block:Wholeplot!Year_87   5.832377e+01   38.6155750   1.51036903     P   0 
## Year:Block:Wholeplot!Year_88    7.262868e+00  7.3523383 0.98783110  P   0 
## Year:Block:NWholeplot:Subplot(R)  1.000000e+00    NA   NA    F   0 
## Year:Block:NWholeplot:Subplot!Year_77 7.466666e-01  0.2822136 2.64575043 P   0 
## Year:Block:NWholeplot:Subplot!Year_79 2.718222e+00  1.2156259 2.23606798   P   0 
## Year:Block:NWholeplot:Subplot!Year_80 1.368230e+00  0.6118913 2.23606798     P   0 
## Year:Block:NWholeplot:Subplot!Year_81 2.158255e+00  0.9652010 2.23606798     P   0 
## Year:Block:NWholeplot:Subplot!Year_82 4.794074e+00  2.1439751 2.23606798     P   0 
## Year:Block:NWholeplot:Subplot!Year_83 1.855457e+00  0.8297855 2.23606798     P   0 
## Year:Block:NWholeplot:Subplot!Year_84 4.328390e+00  1.6359796 2.64574820     P   0 
## Year:Block:NWholeplot:Subplot!Year_85 5.397298e+00  1.9708165 2.73861005     P   0 
## Year:Block:NWholeplot:Subplot!Year_86 1.417377e+01 5.1755335 2.73860958    P   0 
## Year:Block:NWholeplot:Subplot!Year_87 8.108572e+00  3.6262636 2.23606798   P   0 
## Year:Block:NWholeplot:Subplot!Year_88 8.893420e+00  3.9772582 2.23606798   P   0
vcnames <- rownames(summary(model5.asr)$varcomp)[1:22] 
model5.asr <- setvarianceterms(model5.asr$call, terms = vcnames, bounds = "U",  
                               initial=0.01, ignore.suffices = FALSE)

## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:33 2017 
##          LogLik     Sigma2    DF     wall    cpu 
##  1      -393.211      1.0    165 15:55:33    0.0 (18 restrained) 
##  2      -367.175      1.0    165 15:55:33    0.0 (9 restrained) 
##  3      -338.725      1.0    165 15:55:33    0.0 (7 restrained) 
##  4      -303.755      1.0    165 15:55:33    0.0 (8 restrained) 
##  5      -285.353      1.0    165 15:55:33    0.0 (7 restrained)

## Warning in asreml(fixed = Yield ~ Year * Rotation * Nitrogen, random = 
~idh(Year):Block/Wholeplot, : 
## Singularity in average information matrix

## 2 singularities in Average Information matrix 
##  6      -278.943      1.0    165 15:55:33    0.0 (7 restrained) 
##  7      -276.627      1.0    165 15:55:33    0.0 (6 restrained) 
##  8      -275.985      1.0    165 15:55:33    0.0 (3 restrained) 
##  9      -276.843      1.0    165 15:55:33    0.0 (2 restrained) 
## 10      -277.981       1.0    165 15:55:33    0.0 (2 restrained) 
## 11      -279.125       1.0    165 15:55:33    0.0 (2 restrained) 
## 12      -280.273       1.0    165 15:55:33    0.0 (2 restrained) 
## 13      -281.422       1.0    165 15:55:33    0.0 (2 restrained)

## Warning in asreml(fixed = Yield ~ Year * Rotation * Nitrogen, random = 
~idh(Year):Block/Wholeplot, : Log- 
## likelihood not converged

## Warning in asreml(fixed = Yield ~ Year * Rotation * Nitrogen, random = 
~idh(Year):Block/Wholeplot, : Some 
## components changed by more than 1% on the last iteration.

model5.asr <- update(model5.asr)

## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:33 2017 
##        LogLik    Sigma2  DF  wall    cpu 
##  1       -282.573      1 .0    165 15:55:33    0.0 (2 restrained)

## Warning in asreml(fixed = Yield ~ Year * Rotation * Nitrogen, random = 
~idh(Year):Block/Wholeplot, : 
## Singularity in average information matrix

## 1 singularities in Average Information matrix 
##  2   -282.543                      1.0     165 15:55:33    0.0 (2 restrained) 
##  3 -282.518                1.0     165 15:55:33    0.0 (2 restrained) 
##  4      -282.499           1.0    165 15:55:33    0.0 (2 restrained) 
##  5      -282.487           1.0    165 15:55:33    0.0 (1 restrained) 
##  6      -282.483           1.0    165 15:55:33    0.0 (1 restrained) 
##  7      -282.483           1.0    165 15:55:33    0.0 (1 restrained)
summary(model5.asr)$varcomp
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## component std.error z.ratio bound %ch
## Year:Block!Year_77 2.344716e+00 3.3536596 0.69915147 U 0.0
## Year:Block!Year_79 2.601849e+00 4.1605472 0.62536224 U 0.0
## Year:Block!Year_80 8.148340e-01 1.5000504 0.54320444 U 0.0
## Year:Block!Year_81 1.028062e+01 16.8785574 0.60909369 U 0.0
## Year:Block!Year_82 1.074595e-01 0.4935380 -0.21773306 U 0.0
## Year:Block!Year_83 1.311193e-01 0.8770122 0.14950686 U 0.0
## Year:Block!Year_84 3.152837e+00 4.8662813 0.64789447 U 0.0
## Year:Block!Year_85 -1.372373e-01 0.2891636 -0.47460095 U 0.0
## Year:Block!Year_86 -3.118268e+06 NA NA S 0.0
## Year:Block!Year_87 -3.176159e+00 16.4108486 -0.19354020 B 0.1
## Year:Block!Year_88 2.563949e-01 3.5621790 0.07197699 U 0.0

## Year:Block:Wholeplot!Year_77 -1.619506e-01 0.1621616 -0.99869904 U 0.0
## Year:Block:Wholeplot!Year_79 7.705295e-01 1.2528742 0.61500946 U 0.0
## Year:Block:Wholeplot!Year_80 7.394376e-01 0.8696140 0.85030549 U 0.0
## Year:Block:Wholeplot!Year_81 7.413468e+00 5.7598117 1.28710245 U 0.0
## Year:Block:Wholeplot!Year_82 3.776488e-01 1.5691971 0.24066374 U 0.0

## Year:Block:Wholeplot!Year_83 1.617967e+00 1.6054174 1.00781705 U 0.0

## Year:Block:Wholeplot!Year_84 -2.360219e-02 1.1987019 -0.01968980 U 0.0
## Year:Block:Wholeplot!Year_85 -6.354705e-01 1.3623072 -0.46646637 U 0.0
## Year:Block:Wholeplot!Year_86 -9.913303e-01 3.8453095 -0.25780247 U 0.0
## Year:Block:Wholeplot!Year_87 6.149949e+01 45.4102563 1.35430844 U 0.0
## Year:Block:Wholeplot!Year_88 7.262868e+00 7.3523383 0.98783110 U 0.0
## Year:Block:NWholeplot:Subplot(R) 1.000000e+00 NA NA F 0.0
## Year:Block:NWholeplot:Subplot!Year_77 8.854815e-01 0.3959994 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_79 2.718222e+00 1.2156259 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_80 1.368230e+00 0.6118913 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_81 2.158255e+00 0.9652010 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_82 4.794074e+00 2.1439751 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_83 1.855457e+00 0.8297855 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_84 4.348626e+00 1.9447645 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_85 6.170008e+00 2.7593116 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_86 1.584683e+01 7.0869141 2.23606875 P 0.0
## Year:Block:NWholeplot:Subplot!Year_87 8.108572e+00 3.6262636 2.23606798 P 0.0
## Year:Block:NWholeplot:Subplot!Year_88 8.893420e+00 3.9772582 2.23606798 P 0.0

info.accumulate <- rbind(info.accumulate, 
                         data.frame(Model = "Meta analysis with 
different variance components",  
                                    infoCriteria(model5.asr, bound.
exclusions = "F"), 
                                    stringsAsFactors = FALSE))
## Warning in infoCriteria.asreml(model5.asr, bound.exclusions = 
"F"): The following bound terms were discounted: 
##  Year:Block:NWholeplot:Subplot(R)
Accumulated summary of REML information criteria
info.accumulate
##Model DF NBound AIC BIC logREML
## 1 Split-plot 3 0 653.1797 662.4975-323.5899
## 2 Split plot meta analysis 13 1 614.3496 654.7269-294.1748
## 3 Split-plot and EXP 4 0 655.1797 667.6035-323.5899
## 4 Split-plot meta analysis and EXP 14 1 616.0131 659.4963-294.0065
## 5 Meta analysis with different variance components 33 1 630.9657 733.4619 -282.4829
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Use split plot with different residual variance in each year

wald(model2.asr, denDF = "algebraic")
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:33 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -294.175           1.0    165 15:55:33    0.0 
##  2      -294.175           1.0    165 15:55:33    0.0 
##  3      -294.175           1.0    165 15:55:33    0.2
## $Wald 
##  
## Wald tests for fixed effects. 
## Response: Yield 
##  
##                        Df denDF   F.inc       Pr 
## (Intercept)             1  10.5 15300.0 0.000000 
## Year                   10  10.4    85.4 0.000000 
## Rotation                4  27.0    26.7 0.000000 
## Nitrogen                2  58.2    55.3 0.000000 
## Year:Rotation          40  22.7     3.7 0.000683 
## Year:Nitrogen          20  48.7     1.3 0.241290 
## Rotation:Nitrogen       8  58.2     1.9 0.072879 
## Year:Rotation:Nitrogen 80  40.6     1.2 0.270253 
##  
## $stratumVariances 
## NULL

Drop unnecessary fixed terms

model2a.asr <- asreml(Yield ~ Year*Rotation*Nitrogen-Year:Rotation:Nitrogen,  
                 random = ~ Year:Block/Wholeplot, 
                     residual = ~ idh(Year):Block:NWholeplot:Subplot, 
                     data = wmpotato)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -454.257           1.0    245 15:55:34    0.0 
##  2      -436.705           1.0    245 15:55:34    0.0 
##  3      -432.022           1.0    245 15:55:34    0.0 
##  4      -429.833           1.0    245 15:55:34    0.0 
##  5      -428.217           1.0    245 15:55:34    0.0 
##  6      -426.955           1.0    245 15:55:34    0.0 
##  7      -426.438           1.0    245 15:55:34    0.0 
##  8      -426.321           1.0    245 15:55:34    0.0 
##  9      -426.301           1.0    245 15:55:34    0.0 
## 10      -426.297           1.0    245 15:55:34    0.0 
## 11      -426.296           1.0    245 15:55:34    0.0 
## 12      -426.296           1.0    245 15:55:34    0.0
wald(model2a.asr, denDF = "algebraic")
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -426.296           1.0    245 15:55:34    0.0 
##  2      -426.296           1.0    245 15:55:34    0.0 
##  3      -426.296           1.0    245 15:55:34    0.0
## $Wald 
##  
## Wald tests for fixed effects. 
## Response: Yield 
##  
##                   Df denDF   F.inc       Pr 
## (Intercept)        1  10.7 14670.0 0.000000 
## Year              10  10.7    79.8 0.000000 
## Rotation           4  32.8    23.0 0.000000 
## Nitrogen           2 128.4    41.9 0.000000 
## Year:Rotation     40  25.3     2.9 0.002830 
## Year:Nitrogen     20  88.3     1.4 0.166185 
## Rotation:Nitrogen  8 128.4     1.3 0.252994 
##  
## $stratumVariances 
## NULL
model2b.asr <- asreml(Yield ~ Year*Rotation*Nitrogen-Year:Rotation:Nitrogen 
- 
                                      Rotation:Nitrogen,  
              random = ~ Year:Block/Wholeplot, 
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                 residual =   ~ idh(Year):Block:NWholeplot:Subplot, 
                      data = wmpotato)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -458.206           1.0    253 15:55:34    0.0 (1 restrained) 
##  2      -452.705           1.0    253 15:55:34    0.0 
##  3      -440.278           1.0    253 15:55:34    0.0 
##  4      -433.140           1.0    253 15:55:34    0.0 
##  5      -429.272           1.0    253 15:55:34    0.0 
##  6      -427.727           1.0    253 15:55:34    0.0 
##  7      -427.310           1.0    253 15:55:34    0.0 
##  8      -427.236           1.0    253 15:55:34    0.0 
##  9      -427.226           1.0    253 15:55:34    0.0 
## 10      -427.225           1.0    253 15:55:34    0.0 
## 11      -427.224           1.0   253 15:55:34    0.0
wald(model2b.asr, denDF = "algebraic")
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -427.224           1.0    253 15:55:34    0.0 
##  2      -427.224           1.0    253 15:55:34    0.0 
##  3      -427.224           1.0    253 15:55:34    0.0
## $Wald 
##  
## Wald tests for fixed effects. 
## Response: Yield 
##  
##               Df denDF   F.inc       Pr 
## (Intercept)    1  10.8 14460.0 0.000000 
## Year          10  10.8    78.5 0.000000 
## Rotation       4  34.0    22.4 0.000000 
## Nitrogen       2 136.7    41.9 0.000000 
## Year:Rotation 40  26.9     2.8 0.003045 
## Year:Nitrogen 20  95.6     1.4 0.154287 
##  
## $stratumVariances 
## NULL
model2c.asr <- asreml(Yield ~ Year*Rotation*Nitrogen-Year:Rotation:Nitrogen 
- 
                        Rotation:Nitrogen - Year:Nitrogen,  
                      random = ~ Year:Block/Wholeplot, 
                      residual =   ~ idh(Year):Block:NWholeplot:Subplot, 
                      data = wmpotato)
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -482.365            1.0     273 15:55:34     0.0 (1 restrained) 
##  2      -473.437           1.0    273 15:55:34    0.0 
##  3      -457.815           1.0    273 15:55:34    0.0 
##  4      -449.143           1.0    273 15:55:34    0.0 
##  5      -444.554           1.0    273 15:55:34    0.0 
##  6      -443.052           1.0    273 15:55:34    0.0 
##  7      -442.746           1.0    273 15:55:34    0.0 
##  8      -442.702           1.0    273 15:55:34    0.0 
##  9      -442.695           1.0    273 15:55:34    0.0 
## 10      -442.694           1.0    273 15:55:34    0.0 
## 11      -442.694           1.0    273 15:55:34    0.0
wald(model2c.asr, denDF = "algebraic")
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -442.694           1.0    273 15:55:34    0.0 
##  2      -442.694           1.0    273 15:55:34    0.0 
##  3      -442.694           1.0    273 15:55:34    0.0
## $Wald 
##  
## Wald tests for fixed effects. 
## Response: Yield 
##  
##               Df denDF   F.inc         Pr 
## (Intercept)    1  10.8 14360.0 0.00000000 
## Year          10  10.8    78.2 0.00000001 
## Rotation       4  32.6    23.2 0.00000000 
## Nitrogen       2 142.0    41.6 0.00000000 
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## Year:Rotation 40  27.0     2.9 0.00223137 
##  
## $stratumVariances 
## NULL
Get predictions and plot
predict(model2c.asr, classify = "Nitrogen")$pvals
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -442.694           1.0    273 15:55:34    0.0 
##  2      -442.694           1.0    273 15:55:34    0.0 
##  3      -442.694           1.0    273 15:55:34    0.0
##  
## Notes: 
## - The predictions are obtained by averaging across the hypertable 
##   calculated from model terms constructed solely from factors in 
##   the averaging and classify sets. 
## - Use ‘average’ to move ignored factors into the averaging set. 
## - The simple averaging set: Year,Rotation 
## - The ignored set: Block,Wholeplot 
## ##  
##   Nitrogen predicted.value std.error    status 
## 1       N1        43.36754  0.402073 Estimable 
## 2       N2        45.02538  0.402073 Estimable 
## 3       N3        45.64905  0.402073 Estimable
predYR <- predict(model2c.asr, classify = "Year:Rotation")$pvals
## Model fitted using the sigma parameterization. 
## ASReml4 Beta-release 4.0.0.9005 Mon Jan 23 15:55:34 2017 
##           LogLik        Sigma2     DF     wall    cpu 
##  1      -442.694           1.0    273 15:55:34    0.0 
##  2      -442.694           1.0    273 15:55:34    0.0 
##  3      -442.694           1.0    273 15:55:34    0.0
predYR
##  
## Notes: 
## - The predictions are obtained by averaging across the hypertable 
##   calculated from model terms constructed solely from factors in 
##   the averaging and classify sets. 
## - Use 'average' to move ignored factors into the averaging set. 
## - The simple averaging set: Nitrogen 
## - The ignored set: Block,Wholeplot 
##  
## ##    Year Rotation predicted.value std.error    status 
## 1    77      IIf        23.43704  1.485051 Estimable 
## 2    77      III        21.91852  1.485051 Estimable 
## 3    77     IIIf        21.87037  1.485051 Estimable 
## 4    77       IV        25.01481  1.485051 Estimable 
## 5    77      IVf        21.19630  1.485051 Estimable 
## 6    79      IIf        39.44074  1.533421 Estimable 
## 7    79      III        46.61852  1.533421 Estimable 
## 8    79     IIIf        45.73704  1.533421 Estimable 
## 9    79       IV        49.50370  1.533421 Estimable 
## 10   79      IVf        44.35185  1.533421 Estimable 
## 11   80      IIf        40.52593  1.448644 Estimable 
## 12   80      III        41.13704  1.448644 Estimable 
## 13   80     IIIf        40.89630  1.448644 Estimable 
## 14   80       IV        41.54444  1.448644 Estimable 
## 15   80      IVf        42.48148  1.448644 Estimable 
## 16   81      IIf        30.37407  1.546351 Estimable 
## 17   81      III        38.04444  1.546351 Estimable 
## 18   81     IIIf        39.45185  1.546351 Estimable 
## 19   81       IV        39.42963  1.546351 Estimable 
## 20   81      IVf        38.13704  1.546351 Estimable 
## 21   82      IIf        39.75185  1.594618 Estimable 
## 22   82      III        40.48519  1.594618 Estimable 
## 23   82     IIIf        42.94815  1.594618 Estimable 
## 24   82       IV        45.53333  1.594618 Estimable 
## 25   82      IVf        45.62963  1.594618 Estimable 
## 26   83      IIf        31.14444  1.535587 Estimable 
## 27   83      III        36.54815  1.535587 Estimable 
## 28   83     IIIf        39.52963  1.535587 Estimable 
## 29   83       IV        37.95556  1.535587 Estimable 
## 30   83      IVf        37.61481  1.535587 Estimable 
## 31   84      IIf        54.58889  1.634753 Estimable 
## 32   84      III        57.67407  1.634753 Estimable 
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## 33   84     IIIf        56.63333  1.634753 Estimable 
## 34   84       IV        58.40000  1.634753 Estimable 
## 35   84      IVf        58.99259  1.634753 Estimable 
## 36   85      IIf        51.48148  1.781401 Estimable 
## 37   85      III        47.80000  1.781401 Estimable 
## 38   85     IIIf        49.78519  1.781401 Estimable 
## 39   85       IV        52.53704  1.781401 Estimable 
## 40   85      IVf        49.75185  1.781401 Estimable 
## 41   86      IIf        48.20926  2.132871 Estimable 
## 42   86      III        51.02778  2.132871 Estimable 
## 43   86     IIIf        54.57593  2.132871 Estimable 
## 44   86       IV        51.48148  2.132871 Estimable 
## 45   86      IVf        52.98704  2.132871 Estimable 
## 46   87      IIf        42.98519  2.809408 Estimable 
## 47   87      III        48.75556  2.809408 Estimable 
## 48   87     IIIf        41.55556  2.809408 Estimable 
## 49   87       IV        45.67407  2.809408 Estimable 
## 50   87      IVf        51.85000  2.809408 Estimable 
## 51   88      IIf        54.28333  1.917713 Estimable 
## 52   88      III        62.76111  1.917713 Estimable 
## 53   88     IIIf        64.41407  1.917713 Estimable 
## 54   88       IV        58.52407  1.917713 Estimable 
## 55   88      IVf        62.45556  1.917713 Estimable
cols <- c('red','darkviolet','violet','darkblue','lightskyblue') 
ggplot(data = predYR,  
       aes(x =Year, y=predicted.value, colour=Rotation, linetype=Rotation, 
shape = Rotation)) + 
  geom_point() + geom_line() + labs(y = "Yield") + 
  scale_color_manual(values = cols) + scale_shape_manual(values = c(16,4,18,3,15)
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Appendix Fig. 1. plot of chunk unnamed-chunk-11 

Appendix 5.  SAS code and output from the analysis of potato 
yields from the Westmaas experiment (supplemental provided 
by Kathleen Yeater)
/*Try Various Random Models*/
/*Split plot within years*/
title1 ‘Split-plot nested within years’;
Proc Mixed data=wmpotato method=REML covtest;*method=REML is default;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ / ddfm=kr;
random Block_ Block_*Wholeplot_ / subject=Year_;
ods select covparms fitstatistics;
run;
Covariance Parameter Estimates

Cov Parm Subject Estimate Standard 
Error Z Value Pr > Z

Block_ Year_ 1.4072 1.4027 1.00 0.1579

Block_*Wholeplot_ Year_ 7.0791 1.8929 3.74 < 
0.0001

Residual 5.1952 0.7005 7.42 < 
0.0001

Fit Statistics
-2 Res Log Likelihood 950.4
AIC (Smaller is Better) 956.4
AICC (Smaller is Better) 956.6
BIC (Smaller is Better) 957.6
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/*Nested split-plot, different residual variance each year*/
title1 ‘Nested split plot with different residual variance in each 
year’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ / ddfm=kr;
random Block_ Block_*Wholeplot_ / subject=Year_;
repeated / group=Year_;
ods select covparms fitstatistics;
run;
Covariance Parameter Estimates

Cov Parm Subject Group Estimate Standard 
Error Z ValuePr > Z

Block_ Year_ 2.1173 1.1783 1.80 0.0362
Block_*Wholeplot_ Year_ 0.9103 0.8170 1.11 0.1326
Residual Year_ 77 0.8185 0.3435 2.38 0.0086
Residual Year_ 79 2.6840 1.1544 2.32 0.0100
Residual Year_ 80 1.3442 0.5864 2.29 0.0109
Residual Year_ 81 5.2395 4.1243 1.27 0.1020
Residual Year_ 82 4.5379 1.8554 2.45 0.0072
Residual Year_ 83 1.9885 0.9469 2.10 0.0179
Residual Year_ 84 4.0134 1.6360 2.45 0.0071
Residual Year_ 85 5.4145 2.1357 2.54 0.0056
Residual Year_ 86 14.2836 5.4923 2.60 0.0047
Residual Year_ 87 58.2196 23.1443 2.52 0.0059
Residual Year_ 88 12.8988 5.5662 2.32 0.0102

Fit Statistics
-2 Res Log Likelihood 891.6
AIC (Smaller is Better) 917.6
AICC (Smaller is Better) 920.0
BIC (Smaller is Better) 922.8

/*Nested split plot with AR1 structure over years*/
title1 ‘Nested split-plot and AR1’;
title2 ‘ ‘;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ / ddfm=kr;
random Block_ Block_*Wholeplot_ / subject=Year_ ;
repeated / subject=Year_ type=AR(1);
ods select covparms fitstatistics;
run;
Covariance Parameter Estimates

Cov Parm Subject Estimate Standard 
Error Z Value Pr Z

Block_ Year_ 1.3777 1.3946 0.99 0.1616
Block_*Wholeplot_ Year_ 6.7744 2.0190 3.36 0.0004
AR(1) Year_ 0.06903 0.1568 0.44 0.6598

Residual 5.4732 1.0339 5.29 < 
0.0001

Fit Statistics
-2 Res Log Likelihood 950.2
AIC (Smaller is Better) 958.2
AICC (Smaller is Better) 958.5
BIC (Smaller is Better) 959.8

/*Nested split plot with different residual variance in each year AND 
AR1 structure*/
title1 ‘Nested split-plot with heterogeneous AR1 structure in each 
year’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ / ddfm=kr;
random Block_ Block_*Wholeplot_ / subject=Year_;
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repeated / group=Year_ type=ARH(1);
ods select covparms fitstatistics;
run;
Covariance Parameter Estimates

Cov Parm Subject Group Estimate Standard 
Error Z Value Pr Z

Block_ Year_ 2.1173 1.1783 1.80 0.0362
Block_*Wholeplot_ Year_ 0.9101 0.8167 1.11 0.1326
Var(1) Year_ 77 0.8185 0.3435 2.38 0.0086
ARH(1) Year_ 77 0 . . .
Var(1) Year_ 79 2.6840 1.1544 2.32 0.0100
ARH(1) Year_ 79 0 . . .
Var(1) Year_ 80 1.3442 0.5863 2.29 0.0109
ARH(1) Year_ 80 0 . . .
Var(1) Year_ 81 5.2402 4.1239 1.27 0.1019
ARH(1) Year_ 81 0 . . .
Var(1) Year_ 82 4.5380 1.8553 2.45 0.0072
ARH(1) Year_ 82 0 . . .
Var(1) Year_ 83 1.9885 0.9469 2.10 0.0179
ARH(1) Year_ 83 0 . . .
Var(1) Year_ 84 4.0134 1.6360 2.45 0.0071
ARH(1) Year_ 84 0 . . .
Var(1) Year_ 85 5.4144 2.1356 2.54 0.0056
ARH(1) Year_ 85 0 . . .
Var(1) Year_ 86 14.2837 5.4923 2.60 0.0047
ARH(1) Year_ 86 0 . . .
Var(1) Year_ 87 58.2206 23.1442 2.52 0.0059
ARH(1) Year_ 87 0 . . .
Var(1) Year_ 88 12.8992 5.5662 2.32 0.0102
ARH(1) Year_ 88 0 . . .

Fit Statistics
-2 Res Log Likelihood 891.6
AIC (Smaller is Better) 939.6
AICC (Smaller is Better) 948.2
BIC (Smaller is Better) 949.1

/*Nested split-plot with different residual variances and variance 
components*/
/*Note: This model is CPU-intensive, prepare for a longer than usual 
run time*/
title1 ‘Nested split-plot with variance components in each year’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ / ddfm=kr;
random Block_ Block_*Wholeplot_ / group=Year_ type=VC;
repeated / group=Year_ type=VC;
ods select covparms fitstatistics;
run;
Fit Statistics
-2 Res Log Likelihood 854.8
AIC (Smaller is Better) 904.8
AICC (Smaller is Better) 914.2
BIC (Smaller is Better) 872.2

Covariance Parameter Estimates

Cov Parm Group Estimate Standard 
Error Z Value Pr > Z

Block_ Year_ 77 2.3216 3.3537 0.69 0.2444
Block_ Year_ 79 2.6018 4.1605 0.63 0.2659
Block_ Year_ 80 0.8148 1.5001 0.54 0.2935
Block_ Year_ 81 10.2806 16.8786 0.61 0.2712
Block_ Year_ 82 0 . . .
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Covariance Parameter Estimates

Cov Parm Group Estimate Standard 
Error Z Value Pr > Z

Block_ Year_ 83 0.1311 0.8770 0.15 0.4406
Block_ Year_ 84 3.1495 4.8633 0.65 0.2586
Block_ Year_ 85 0 . . .
Block_ Year_ 86 0 . . .
Block_ Year_ 87 0 . . .
Block_ Year_ 88 0.2564 3.5622 0.07 0.4713
Block_*Wholeplot_ Year_ 77 0 . . .
Block_*Wholeplot_ Year_ 79 0.7705 1.2529 0.62 0.2693
Block_*Wholeplot_ Year_ 80 0.7394 0.8696 0.85 0.1976
Block_*Wholeplot_ Year_ 81 7.4135 5.7598 1.29 0.0990
Block_*Wholeplot_ Year_ 82 0.2702 1.3809 0.20 0.4224
Block_*Wholeplot_ Year_ 83 1.6180 1.6054 1.01 0.1568
Block_*Wholeplot_ Year_ 84 0 . . .
Block_*Wholeplot_ Year_ 85 0 . . .
Block_*Wholeplot_ Year_ 86 0 . . .
Block_*Wholeplot_ Year_ 87 58.3238 38.6156 1.51 0.0655
Block_*Wholeplot_ Year_ 88 7.2629 7.3523 0.99 0.1616
Residual Year_ 77 0.7464 0.2820 2.65 0.0041
Residual Year_ 79 2.7182 1.2156 2.24 0.0127
Residual Year_ 80 1.3682 0.6119 2.24 0.0127
Residual Year_ 81 2.1583 0.9652 2.24 0.0127
Residual Year_ 82 4.7941 2.1440 2.24 0.0127
Residual Year_ 83 1.8555 0.8298 2.24 0.0127
Residual Year_ 84 4.3284 1.6360 2.65 0.0041
Residual Year_ 85 5.3971 1.9707 2.74 0.0031
Residual Year_ 86 14.1737 5.1755 2.74 0.0031
Residual Year_ 87 8.1086 3.6263 2.24 0.0127
Residual Year_ 88 8.8934 3.9773 2.24 0.0127

	
/*Nested split-plot, different residual variance each year*/
/*Tests for Fixed Effects*/
title1 ‘Nested split plot with different residual variance in each 
year’;
title2 ‘Tests for Fixed Effects’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ / ddfm=kr chisq;
random intercept Block_ Block_*Wholeplot_ / subject=Year_;
repeated / group=Year_;
ods select tests3;
run;
Type 3 Tests of Fixed Effects

Effect Num 
DF

Den 
DF Chi-Square F Value Pr > ChiSq Pr > F

Year_ 10 9.98 851.71 85.52 < 0.0001 < 
0.0001

Rotation_ 4 44.4 71.00 17.75 < 0.0001 < 
0.0001

Year_*Rotation_ 40 6.51 154.96 4.49 < 0.0001 0.0269
Nitrogen_ 2 35.8 21.19 10.59 < 0.0001 0.0002
Year_*Nitrogen_ 20 32.1 29.16 1.24 0.0847 0.2841
Rotation_*Nitrogen_ 8 35.8 6.30 0.79 0.6137 0.6167
Year_*Rotati*Nitroge 80 17.5 108.44 1.22 0.0189 0.3278

title1 ‘Nested split plot with different residual variance in each 
year’;
title2 ‘Drop 3-way Fixed term’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_|Rotation_|Nitrogen_ @2 / ddfm=kr chisq;
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random intercept Block_ Block_*Wholeplot_ / subject=Year_;
repeated / group=Year_;
ods select tests3;
run;
Type 3 Tests of Fixed Effects

Effect Num 
DF

Den 
DF Chi-Square F Value Pr > ChiSq Pr > F

Year_ 10 10.5 796.19 79.81 < 0.0001 < 
0.0001

Rotation_ 4 52.9 71.73 17.93 < 0.0001 < 
0.0001

Year_*Rotation_ 40 14.9 117.03 3.02 < 0.0001 0.0122

Nitrogen_ 2 68.4 27.46 13.73 < 0.0001 < 
0.0001

Year_*Nitrogen_ 20 79.5 29.67 1.35 0.0754 0.1747
Rotation_*Nitrogen_ 8 126 8.40 1.05 0.3954 0.4025

title1 ‘Nested split plot with different residual variance in each year’;
title2 ‘3-way Fixed term and Rotation*Nitrogen Removed’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_ Rotation_ Nitrogen_ Year_*Rotation_ 
Year_*Nitrogen_ / ddfm=kr chisq;
random intercept Block_ Block_*Wholeplot_ / subject=Year_;
repeated / group=Year_;
ods select tests3;
run;
Type 3 Tests of Fixed Effects

Effect Num 
DF

Den 
DF Chi-Square F Value Pr > ChiSq Pr > F

Year_ 10 10.8 783.24 78.50 < 0.0001 < 
0.0001

Rotation_ 4 57.2 69.67 17.42 < 0.0001 < 
0.0001

Nitrogen_ 2 70.7 27.45 13.72 < 0.0001 < 
0.0001

Year_*Rotation_ 40 18.4 112.77 2.87 < 0.0001 0.0089
Year_*Nitrogen_ 20 89.4 29.82 1.37 0.0729 0.1588

title1 ‘Nested split plot with different residual variance in each 
year’;
title2 ‘3-way Fixed term, Rotation*Nitrogen, and Year*Nitrogen 
Removed’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_ Rotation_ Nitrogen_ Year_*Rotation_ / ddfm=kr 
chisq;
random intercept Block_ Block_*Wholeplot_ / subject=Year_;
repeated / group=Year_;
ods select tests3;
run;

Type 3 Tests of Fixed Effects
Effect Num DF Den DF Chi-Square F Value Pr > ChiSq Pr > F

Year_ 10 10.8 780.44 78.22 < 0.0001 < 
0.0001

Rotation_ 4 59.7 70.33 17.58 < 0.0001 < 
0.0001

Nitrogen_ 2 140 70.72 35.36 < 0.0001 < 
0.0001

Year_*Rotation_ 40 17.4 117.47 2.99 < 0.0001 0.0081

/*Get predictions and plot*/
/*Predicted means for Nitrogen*/
/*Predicted means for Year*Rotation*/
title1 ‘Predicted Means for Nitrogen’;
title2 ‘Predicted Means for Year*Rotation’;
Proc Mixed data=wmpotato method=REML covtest;
class Year_ Block_ Wholeplot_ Rotation_ Nitrogen_;
model Yield = Year_ Rotation_ Nitrogen_ Year_*Rotation_ / ddfm=kr 
chisq;
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random intercept Block_ Block_*Wholeplot_ / subject=Year_;
repeated / group=Year_;
lsmeans Nitrogen_ Year_*Rotation_;
ods select lsmeans;
run;
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Least Squares Means

Effect Rotation_ Nitrogen_ Year_ Estimate
Standard 
Error

DF t Value Pr > |t|

Nitrogen_ N1 43.3676 0.4069 16.2 106.57 < 0.0001

Nitrogen_ N2 45.0254 0.4069 16.2 110.65 < 0.0001

Nitrogen_ N3 45.6490 0.4069 16.2 112.18 < 0.0001

Year_*Rotation_ III 77 21.9185 1.4849 18.3 14.76 < 0.0001

Year_*Rotation_ IIIf 77 21.8704 1.4849 18.3 14.73 < 0.0001

Year_*Rotation_ IIf 77 23.4370 1.4849 18.3 15.78 < 0.0001

Year_*Rotation_ IV 77 25.0148 1.4849 18.3 16.85 < 0.0001

Year_*Rotation_ IVf 77 21.1963 1.4849 18.3 14.27 < 0.0001

Year_*Rotation_ III 79 46.6185 1.5333 20.6 30.40 < 0.0001

Year_*Rotation_ IIIf 79 45.7370 1.5333 20.6 29.83 < 0.0001

Year_*Rotation_ IIf 79 39.4407 1.5333 20.6 25.72 < 0.0001

Year_*Rotation_ IV 79 49.5037 1.5333 20.6 32.29 < 0.0001

Year_*Rotation_ IVf 79 44.3519 1.5333 20.6 28.93 < 0.0001

Year_*Rotation_ III 80 41.1370 1.4485 16.9 28.40 < 0.0001

Year_*Rotation_ IIIf 80 40.8963 1.4485 16.9 28.23 < 0.0001

Year_*Rotation_ IIf 80 40.5259 1.4485 16.9 27.98 < 0.0001

Year_*Rotation_ IV 80 41.5444 1.4485 16.9 28.68 < 0.0001

Year_*Rotation_ IVf 80 42.4815 1.4485 16.9 29.33 < 0.0001

Year_*Rotation_ III 81 38.0444 1.5463 23.7 24.60 < 0.0001

Year_*Rotation_ IIIf 81 39.4519 1.5463 23.7 25.51 < 0.0001

Year_*Rotation_ IIf 81 30.3741 1.5463 23.7 19.64 < 0.0001

Year_*Rotation_ IV 81 39.4296 1.5463 23.7 25.50 < 0.0001

Year_*Rotation_ IVf 81 38.1370 1.5463 23.7 24.66 < 0.0001

Year_*Rotation_ III 82 40.4852 1.5945 23.2 25.39 < 0.0001

Year_*Rotation_ IIIf 82 42.9481 1.5945 23.2 26.94 < 0.0001

Year_*Rotation_ IIf 82 39.7519 1.5945 23.2 24.93 < 0.0001

Year_*Rotation_ IV 82 45.5333 1.5945 23.2 28.56 < 0.0001

Year_*Rotation_ IVf 82 45.6296 1.5945 23.2 28.62 < 0.0001

Year_*Rotation_ III 83 36.5481 1.5354 20.9 23.80 < 0.0001

Year_*Rotation_ IIIf 83 39.5296 1.5354 20.9 25.74 < 0.0001

Year_*Rotation_ IIf 83 31.1444 1.5354 20.9 20.28 < 0.0001

Year_*Rotation_ IV 83 37.9556 1.5354 20.9 24.72 < 0.0001

Year_*Rotation_ IVf 83 37.6148 1.5354 20.9 24.50 < 0.0001

Year_*Rotation_ III 84 57.6741 1.6346 24.9 35.28 < 0.0001

Year_*Rotation_ IIIf 84 56.6333 1.6346 24.9 34.65 < 0.0001

Year_*Rotation_ IIf 84 54.5889 1.6346 24.9 33.40 < 0.0001

Year_*Rotation_ IV 84 58.4000 1.6346 24.9 35.73 < 0.0001

Year_*Rotation_ IVf 84 58.9926 1.6346 24.9 36.09 < 0.0001

Year_*Rotation_ III 85 47.8000 1.7813 29.8 26.84 < 0.0001

Year_*Rotation_ IIIf 85 49.7852 1.7813 29.8 27.95 < 0.0001

Year_*Rotation_ IIf 85 51.4815 1.7813 29.8 28.90 < 0.0001

Year_*Rotation_ IV 85 52.5370 1.7813 29.8 29.49 < 0.0001

Year_*Rotation_ IVf 85 49.7519 1.7813 29.8 27.93
< 
0.0001

Year_*Rotation_ III 86 51.0278 2.1328 36.1 23.93
< 
0.0001

Year_*Rotation_ IIIf 86 54.5759 2.1328 36.1 25.59 < 0.0001

Year_*Rotation_ IIf 86 48.2093 2.1328 36.1 22.60 < 0.0001

Year_*Rotation_ IV 86 51.4815 2.1328 36.1 24.14 < 0.0001

Year_*Rotation_ IVf 86 52.9870 2.1328 36.1 24.84 < 0.0001

Year_*Rotation_ III 87 48.7556 2.8095 31.5 17.35 < 0.0001

Year_*Rotation_ IIIf 87 41.5556 2.8095 31.5 14.79 < 0.0001

Year_*Rotation_ IIf 87 42.9852 2.8095 31.5 15.30 < 0.0001

Year_*Rotation_ IV 87 45.6741 2.8095 31.5 16.26 < 0.0001

Year_*Rotation_ IVf 87 51.8500 2.8095 31.5 18.46 < 0.0001

Year_*Rotation_ III 88 62.7611 1.9176 35.1 32.73 < 0.0001

Year_*Rotation_ IIIf 88 64.4141 1.9176 35.1 33.59 < 0.0001



646 Appendix A 

Least Squares Means

Effect Rotation_ Nitrogen_ Year_ Estimate
Standard 
Error

DF t Value Pr > |t|

Year_*Rotation_ IIf 88 54.2833 1.9176 35.1 28.31 < 0.0001

Year_*Rotation_ IV 88 58.5241 1.9176 35.1 30.52 < 0.0001

Year_*Rotation_ IVf 88 62.4556 1.9176 35.1 32.57 < 0.0001

/*Plot of year(x) predicted value(y) rotation (group) */

data YR;
set lsmeans;
if Effect = ‘Nitrogen_’ then delete;
run;

proc template;
define statgraph sgdesign;
dynamic _YEAR_ _ESTIMATE _ROTATION_;
begingraph;
   entrytitle halign=center ‘Least Squares Means - Year * Rotation’;
   layout lattice / rowdatarange=data columndatarange=data 
rowgutter=10 columngutter=10;
      layout overlay / xaxisopts=( label=(‘Year’) linearopts=( 
tickvaluesequence=( start=77.0 end=88.0 increment=1.0))) yaxisopts=( 
label=(‘Least Squares Means’));
         seriesplot x=_YEAR_ y=_ESTIMATE / group=_ROTATION_ 
name=’series’ display=(markers) clusterwidth=0.5 connectorder=xaxis 
grouporder=data;
         discretelegend ‘series’ / opaque=false border=true 
halign=right valign=bottom displayclipped=true across=1 order=rowmajor 
location=inside;
      endlayout;
   endlayout;
endgraph;
end;
run;

proc sgrender data=YR template=sgdesign;
dynamic _YEAR_=”’YEAR_’n” _ESTIMATE=”ESTIMATE” _
ROTATION_=”’ROTATION_’n”;
run;
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Appendix 6. Answers to Review Questions

1. Why would you do a long-term rotation experiment instead of several single-
year experiments?

Rotation experiments allow you to study differences between sequences of 
treatments that are applied over several years. They also allow you to study 
how the effect of a treatment develops over more than a year.

2. What is the difference between a short-term and a long-term rotation experiment?

In a short-term rotation experiment the sequences run through one simultaneous 
cycle, to compare the sequences in the final year. Long-term rotation experiment 
run through several cycles, and involve analyses of data from more than a year.

3. Why might it be a problem if you ran the rotations over only one series of years?

The comparisons between the rotations will depend on the specific properties of 
those years, which may favor one rotation over the others. There is less of a risk 
of this happening if you run the experiments over more than one series of years.

4. How might you include auxiliary treatments, in addition to the rotation treatments?

The simplest way to do this is to split the plots into subplots, to form a split-plot 
design in each year, with the auxiliary treatment factor(s) as the split-plot factor(s).

5. Why might the analysis be more complicated than the analysis of a single-year experiment?

The results will be recorded from several different years, and these may show 
different amounts of random variation. The same plot may be observed in sev-
eral years and, unless these observations are well separated, the results may 
show a nonuniform correlation structure where the correlations between these 
observations decline with increasing distance in time.

6. What are the advantages of REML compared to ordinary analysis of variance, 
and how would exploit these in your analysis? 

REML allows different residual variances to be estimated for the years during the 
combined analysis of data from several years. It also allows you to fit models to 
describe the correlations between observations at different times on the same plot.

7. What statistics can you use to decide on the random model?

You can use the differences between the deviances of two models, if one is a gener-
alization of the other (i.e. if it contains all the random parameters of that model) to-
gether with some additional ones. This can be treated can be treated as a chi-square 
statistic with number of degrees of freedom equal to the number of additional pa-
rameters. Otherwise you can use Akaike or Schwarz Bayesian information criteria. 
The best model is the one with the smallest value of the chosen criterion.

8. How would you assess the fixed terms?

The standard way to do this is to examine their Wald statistics. These would have 
exact chi-square distributions if the variance parameters were known but, as those 
must be estimated, the statistics are only asymptotically distributed as chi-square. 
In practical situations they are biased (i.e. they tend to give too many significant 
results). Alternatively, your statistical software may be able to estimate the number 
of residual degrees of freedom relevant to each term, so that F statistics can be used 
instead. These should not be subject to the biases of the chi-square statistics. 
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Chapter 12: Spatial Statistics of 
field experiments

Juan Burgueño

SAS programs for Examples are provided in the electronic supplement.

Answer to review questions

1. Explain with your own words what means "spatial variability analysis"

In field experimental designs it is related with modelling residual error by con-
sidering the spatial distribution of the plots in the field.

2. What are the different models that can be used to model the residual spatial variability?

Among others, neighbor models, moving average, autoregressive models in row 
and columns, splines. 

3. Why modelling the residual spatial variability usually has larger precision than 
a standard analysis in which spatial variability is not modeling?

Because the experimental design is not able to capture all the variability in the 
field. It is not able to capture variability generated during the experimentation and it 
is not abel to capture small-scale variability.

4. Is it possible to model spatial variability of an experiment with five treatments 
in two replicates? Justify your answer.

It is difficult since there is not so much information, there is a few number of row 
and columns in the field to adjust most of the model used to model spatial variability.

5. If you are analyzing an experimental design; and you want to perform spatial 
analysis, are there any changes in the assumptions? If so, mention them.

Yes, all spatial analysis models assume some degree of relatedness between resid-
uals error compared with the assumption of independence used in standard analyses.

6. What are the advantages of using spatial analysis?

With spatial analysis it is possible to capture more noise and extract more infor-
mation about the treatments. Spatial analysis usually is more precise and it adjusts 
the means of the treatments by the position in the field.
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Chapter 13: Augmented Designs- 
Experimental Designs in which all 

treatments are not replicated

Juan Burgueño, José Crossa, Francisco Rodríguez, and Kathleen M. Yeater 

Appendix A1. Complete results for Example 1 obtained with the 
codes in the text. SAS editor file (.sas) provided in electronic 
supplement.

(P1-f)
The GLIMMIX Procedure

Model Information

Data Set WORK.A
Response Variable y
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Diagonal
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Residual

Class Level Information
Class Levels Values
t 8 1 2 3 4 5 6 7 8

Number of Observations Read 12
Number of Observations Used 12

Dimensions
Covariance Parameters 1
Columns in X 9
Columns in Z 0
Subjects (Blocks in V) 1
Max Obs per Subject 12

Optimization Information
Optimization Technique None
Parameters 9
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Not Profiled

Fit Statistics
-2 Res Log Likelihood 16.94
AIC (smaller is better) 34.94
AICC (smaller is better) 214.94
BIC (smaller is better) 29.41
CAIC (smaller is better) 38.41
HQIC (smaller is better) 22.82
Pearson Chi-Square 9.33
Pearson Chi-Square / DF 2.33

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
t 7 4 16.06 0.0088
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Estimates
Label Estimate Standard Error DF t Value Pr > |t|
Ch -5.3333 1.2472 4 -4.28 0.0129
UnT -4.0000 2.1602 4 -1.85 0.1377
Ch-UnT -5.6667 1.7638 4 -3.21 0.0325

t Least Squares Means
t Estimate Standard Error DF t Value Pr > |t|
1 22.3333 0.8819 4 25.32 < 0.0001
2 27.6667 0.8819 4 31.37 < 0.0001
3 28.0000 1.5275 4 18.33 < 0.0001
4 32.0000 1.5275 4 20.95 < 0.0001
5 27.0000 1.5275 4 17.68 < 0.0001
6 38.0000 1.5275 4 24.88 < 0.0001
7 35.0000 1.5275 4 22.91 < 0.0001
8 28.0000 1.5275 4 18.33 < 0.0001

Appendix 1. Complete results for Example 1 obtained with the 
codes in the text.

(P2-f)
The GLIMMIX Procedure
Model Information
Data Set WORK.A
Response Variable y
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Diagonal
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Residual

Class Level Information

Class Levels Values
t 8 1 2 3 4 5 6 7 8
d1 3 1 2 3

Number of Observations Read 12
Number of Observations Used 12

Dimensions

Covariance Parameters 1
Columns in X 12
Columns in Z 0
Subjects (Blocks in V) 1
Max Obs per Subject 12

Optimization Information
Optimization Technique None
Parameters 9
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Not Profiled

Fit Statistics

-2 Res Log Likelihood 16.94
AIC (smaller is better) 34.94
AICC (smaller is better) 214.94
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Fit Statistics

BIC (smaller is better) 29.41
CAIC (smaller is better) 38.41
HQIC (smaller is better) 22.82
Pearson Chi-Square 9.33
Pearson Chi-Square / DF 2.33

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
d1 2 4 34.93 0.0029
t(d1) 5 4 8.51 0.0295

Estimates
Label Estimate Standard Error DF t Value Pr > |t|
Ch -5.3333 1.2472 4 -4.28 0.0129
UnT -4.0000 2.1602 4 -1.85 0.1377
Ch-UnT -5.6667 1.7638 4 -3.21 0.0325

d1 Least Squares Means
d1 Estimate Standard Error DF t Value Pr > |t|
1 22.3333 0.8819 4 25.32 < 0.0001
2 27.6667 0.8819 4 31.37 < 0.0001
3 31.3333 0.6236 4 50.25 < 0.0001

t(d1) Least Squares Means
t d1 Estimate Standard Error DF t Value Pr > |t|
1 1 22.3333 0.8819 4 25.32 < 0.0001
2 2 27.6667 0.8819 4 31.37 < 0.0001
3 3 28.0000 1.5275 4 18.33 < 0.0001
4 3 32.0000 1.5275 4 20.95 < 0.0001
5 3 27.0000 1.5275 4 17.68 < 0.0001
6 3 38.0000 1.5275 4 24.88 < 0.0001
7 3 35.0000 1.5275 4 22.91 < 0.0001
8 3 28.0000 1.5275 4 18.33 < 0.0001

Appendix A1. Complete results for Example 1 obtained with the 
codes in the text.

(P3-f)
The GLIMMIX Procedure
Model Information
Data Set WORK.A
Response Variable y
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Diagonal
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Residual

Class Level Information
Class Levels Values
t 8 1 2 3 4 5 6 7 8
d2 2 1 2

Number of Observations Read 12

Number of Observations Used 12

Dimensions
Covariance Parameters 1
Columns in X 11
Columns in Z 0
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Dimensions
Subjects (Blocks in V) 1
Max Obs per Subject 12

Optimization Information
Optimization Technique None
Parameters 9
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Not Profiled

Fit Statistics
-2 Res Log Likelihood 16.94
AIC (smaller is better) 34.94
AICC (smaller is better) 214.94
BIC (smaller is better) 29.41
CAIC (smaller is better) 38.41
HQIC (smaller is better) 22.82
Pearson Chi-Square 9.33
Pearson Chi-Square / DF 2.33

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
d2 1 4 51.57 0.0020
t(d2) 6 4 10.14 0.0210

Estimates
Label Estimate Standard Error DF t Value Pr > |t|
Ch -5.3333 1.2472 4 -4.28 0.0129
UnT -4.0000 2.1602 4 -1.85 0.1377
Ch-UnT -5.6667 1.7638 4 -3.21 0.0325

d2 Least Squares Means
d2 Estimate Standard Error DF t Value Pr > |t|
1 25.0000 0.6236 4 40.09 < 0.0001
2 31.3333 0.6236 4 50.25 < 0.0001

t(d2) Least Squares Means
t d2 Estimate Standard Error DF t Value Pr > |t|
1 1 22.3333 0.8819 4 25.32 < 0.0001
2 1 27.6667 0.8819 4 31.37 < 0.0001
3 2 28.0000 1.5275 4 18.33 < 0.0001
4 2 32.0000 1.5275 4 20.95 < 0.0001
5 2 27.0000 1.5275 4 17.68 < 0.0001
6 2 38.0000 1.5275 4 24.88 < 0.0001
7 2 35.0000 1.5275 4 22.91 < 0.0001
8 2 28.0000 1.5275 4 18.33 < 0.0001

Tests of Effect Slices for t(d2) Sliced By d2
d2 Num DF Den DF F Value Pr > F
1 1 4 18.29 0.0129
2 5 4 8.51 0.0295

Appendix A1. Complete results for Example 1 obtained with the 
codes in the text.

(P2-r)

The GLIMMIX Procedure

Model Information
Data Set WORK.A
Response Variable Y
Response Distribution Gaussian
Link Function Identity
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Model Information
Variance Function Default
Variance Matrix Not blocked
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Containment

Class Level Information
Class Levels Values
t 8 1 2 3 4 5 6 7 8
d1 3 1 2 3

Number of Observations Read 12

Number of Observations Used 12

Dimensions
G-side Cov. Parameters 1
R-side Cov. Parameters 1
Columns in X 4
Columns in Z 8
Subjects (Blocks in V) 1
Max Obs per Subject 12

Optimization Information
Optimization Technique Dual Quasi-Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Residual Variance Profiled
Starting From Data

Iteration History
Iteration Restarts Evaluations Objective Function Change Max Gradient

0 0 4 47.864285513 . 2.05E-15

Convergence criterion (ABSGCONV=0.00001) satisfied.

Fit Statistics
-2 Res Log Likelihood 47.86
AIC (smaller is better) 51.86
AICC (smaller is better) 53.86
BIC (smaller is better) 52.02
CAIC (smaller is better) 54.02
HQIC (smaller is better) 50.79
Generalized Chi-Square 21.00
Gener. Chi-Square / DF 2.33

Covariance Parameter Estimates
Cov Parm Estimate Standard Error
t(d1) 17.5333 12.6726
Residual 2.3333 1.6499

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
d1 2 5 2.00 0.2304

Solution for Random Effects
Effect t d1 Estimate Std Err Pred DF t Value Pr > |t|
t(d1) 1 1 -626E-16 4.1873 4 -0.00 1.0000
t(d1) 2 2 -4E-14 4.1873 4 -0.00 1.0000
t(d1) 3 3 -2.9418 2.1537 4 -1.37 0.2437
t(d1) 4 3 0.5884 2.1537 4 0.27 0.7982
t(d1) 5 3 -3.8244 2.1537 4 -1.78 0.1504
t(d1) 6 3 5.8837 2.1537 4 2.73 0.0523
t(d1) 7 3 3.2360 2.1537 4 1.50 0.2074
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Solution for Random Effects
Effect t d1 Estimate Std Err Pred DF t Value Pr > |t|
t(d1) 8 3 -2.9418 2.1537 4 -1.37 0.2437

Estimates
Label Estimate Standard Error DF t Value Pr > |t|
Ch -5.3333 6.0516 5 -0.88 0.4185
UnT -3.5302 2.0294 4 -1.74 0.1569
Ch-UnT -6.0582 4.5184 5 -1.34 0.2377

d1 Least Squares Means
d1 Estimate Standard Error DF t Value Pr > |t|
1 22.3333 4.2791 5 5.22 0.0034
2 27.6667 4.2791 5 6.47 0.0013
3 31.3333 1.8196 5 17.22 < 0.0001
Tests of Covariance Parameters 
Based on the Restricted Likelihood
Label DF -2 Res Log Like ChiSq Pr > ChiSq Note
t(d1=3) 1 51.9494 4.09 0.0216 MI

MI: P-value based on a mixture of chi-squares.

Appendix A1. Complete results for Example 1 obtained with the 
codes in the text.

(P3-r)
The GLIMMIX Procedure

Model Information

Data Set WORK.A
Response Variable y
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Not blocked
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Containment

Class Level Information
Class Levels Values
t 8 1 2 3 4 5 6 7 8
d2 2 1 2

Number of Observations Read 12
Number of Observations Used 12

Dimensions
G-side Cov. Parameters 2
R-side Cov. Parameters 1
Columns in X 3
Columns in Z 16
Subjects (Blocks in V) 1
Max Obs per Subject 12

Optimization Information
Optimization Technique Dual Quasi-Newton
Parameters in Optimization 2
Lower Boundaries 2
Upper Boundaries 0
Fixed Effects Profiled
Residual Variance Profiled
Starting From Data
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Iteration History

Iteration Restarts Evaluations Objective Function Change Max Gradient

0 0 4 54.050115446 . 5.27E-16

Convergence criterion (ABSGCONV=0.00001) satisfied.

Fit Statistics
-2 Res Log Likelihood 54.05
AIC (smaller is better) 60.05
AICC (smaller is better) 64.05
BIC (smaller is better) 60.29
CAIC (smaller is better) 63.29
HQIC (smaller is better) 58.44
Generalized Chi-Square 23.33
Gener. Chi-Square / DF 2.33

Covariance Parameter Estimates
Cov Parm Group Estimate Standard Error
t(d2) d2 1 13.4444 20.1208
t(d2) d2 2 17.5333 12.6726
Residual 2.3333 1.6499

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
d2 1 6 3.85 0.0975

Solution for Random Effects
Effect t d2 Group Estimate Std Err Pred DF t Value Pr > |t|
t(d2) 1 1 d2 1 -2.5208 2.6627 4 -0.95 0.3974
t(d2) 2 1 d2 1 2.5208 2.6627 4 0.95 0.3974
t(d2) 3 2 d2 1 0 3.6667 4 0.00 1.0000
t(d2) 4 2 d2 1 0 3.6667 4 0.00 1.0000
t(d2) 5 2 d2 1 0 3.6667 4 0.00 1.0000
t(d2) 6 2 d2 1 0 3.6667 4 0.00 1.0000
t(d2) 7 2 d2 1 0 3.6667 4 0.00 1.0000
t(d2) 8 2 d2 1 0 3.6667 4 0.00 1.0000
t(d2) 1 1 d2 2 0 4.1873 4 0.00 1.0000
t(d2) 2 1 d2 2 0 4.1873 4 0.00 1.0000
t(d2) 3 2 d2 2 -2.9418 2.1537 4 -1.37 0.2437
t(d2) 4 2 d2 2 0.5884 2.1537 4 0.27 0.7982
t(d2) 5 2 d2 2 -3.8244 2.1537 4 -1.78 0.1504
t(d2) 6 2 d2 2 5.8837 2.1537 4 2.73 0.0523
t(d2) 7 2 d2 2 3.2360 2.1537 4 1.50 0.2074
t(d2) 8 2 d2 2 -2.9418 2.1537 4 -1.37 0.2437

Estimates
Label Estimate Standard Error DF t Value Pr > |t|
Ch -5.0417 6.0446 4 -0.83 0.4512
UnT 3.5302 5.5684 4 0.63 0.5605
Ch-UnT -5.9123 5.8172 6 -1.02 0.3487
d2 Least Squares Means
d2 Estimate Standard Error DF t Value Pr > |t|
1 25.0000 2.6667 6 9.37 < 0.0001
2 31.3333 1.8196 6 17.22 < 0.0001
Tests of Covariance Parameters 
Based on the Restricted Likelihood
Label DF -2 Res Log Like ChiSq Pr > ChiSq Note
T(d2=1) 1 58.6165 4.57 0.0163 MI
T(d2=2) 1 58.1353 4.09 0.0216 MI
MI: P-value based on a mixture of chi-squares.
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Chapter 14: Multivariate Methods 
for Agricultural Research 

Kathleen M. Yeater and Maria B. Villamil

Review Questions (True or False)

[Hint: Your T/F answers can be located using information in Table 1.]

1. We can explore relationships among variables in a data set with MR, CART, or 
even with cluster analysis among other tools. (T)

2. The main difference between PCA and FA is that the PCA tries to uncover 
theoretical constructs underlying the data set. (F)

3. SEM and CART are examples of flexible modern techniques that can integrate 
categorical and continuous variables. (T)

4. MANOVA, PCA, and DA are examples of techniques that require multivariate 
normality and homogeneity of variances. (T)

5. When the goal of the MA is to predict group membership, then DA, LR, or 
CART are NOT good choices. (F)

6. The desired result of applying MANOVA to a data set is to create linear 
combinations of variables that maximize our group differences. (F)

7. No previous knowledge of group membership is required when we explore the 
data set with CA. (T)

8. If the dependent variable in the data set only takes two values, a LR is the most 
appropriate technique to describe differences among the two possible outcomes. (T)

9. If your data set does not meet the requirements of multivariate normality you 
cannot apply any of the MA techniques. (F)

10. You can use CCPA to explore the distribution of several plant species on different 
environments characterized by topography, moisture level, aspect, etc. (T)

Exercises:

For the following exercises we will be working with the iris data set available from 
R by typing:
> library(datasets)
> iris

Once the data set is available on your workspace,

1) Investigate the structure of the data set and create a scatterplot matrix of the 
variables

Sepal.Length, Sepal.Width, Petal.Length, Petal.Width.

What can you infer from these results?
> str(iris)
‘data.frame’:	 150 obs. of	 5 variables:
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$ Sepal.Length: num	 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num	 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num	 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num	 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species	 : Factor w/ 3 levels “setosa”,”versicolor”,..: 1 1 1 1
1 1 1 1 1 1 ...
> pairs(iris[,1:4])

2)	 Explore the possibility of successfully separating the Iris species based on the 
sepal and petal variables listed. Hint: You will need the MASS library.

> library(MASS)
> iris.lda<-lda(iris [,-5], iris[,5])
> iris.lda 
Call:
lda(iris[, -5], iris[, 5])
Prior probabilities of groups:
    setosa versicolor  virginica 
 0.3333333  0.3333333  0.3333333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa            5.006       3.428        1.462       0.246
versicolor        5.936       2.770        4.260       1.326
virginica         6.588       2.974        5.552       2.026

Coefficients of linear discriminants:
                    LD1         LD2
Sepal.Length  0.8293776  0.02410215
Sepal.Width   1.5344731  2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width  -2.8104603  2.83918785

Proportion of trace:
   LD1    LD2 
0.9912 0.0088 
> plot(iris.lda, abbrev=TRUE, cex=0.8) # Saved as Exercise lda plot.
tiff
> abline(h=0, v=0, lty=4)
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3)	 Calculate the error rates associated with the classification of each of the Iris 
species and provide an interpretation of your results.
> iris.ld<-predict(iris.lda)
> iris.ldcv<-lda(iris [,-5], iris [,5], CV=T)
> table(true=iris$Species, pred=iris.ldcv$class)
            pred
true         setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         48         2
  virginica       0          1        49

Essential website information

R: http://cran.r-project.org/web/views/Multivariate.html
SAS: http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/

viewer.htm
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Chapter 15: Nonlinear Regression 
Models and Applications

Fernando Miguez, Sotirios Archontoulis, and Hamze Dokoohaki

Answer To Exercises
Multiple choice correct answers

1. e)

2. d)

3. c)

4. b)

5. b)

Exercise 1

1.a. The simple exponential model is

0 exp( )Y Y k= −

The first partial derivative with respect to k is still

0 exp( )Y Y kx x
k

∂ = − ×−
∂

Remember that the derivative of f(x) = exp(x) is also exp(x). The second derivative 
will not be equal to zero, therefore this is a function with a nonlinear parameter k.

1.b. In the model

0 1exp( )xy b b
q

= + −  

The partial derivative with respect to the first parameter (b0) is

0

0y
b

∂ =
∂

 

Thus, this is a linear parameter. The first partial derivative with respect to the second 
parameter ( ) is

( )
1

expy x
b q

∂ = −
∂  

The second partial derivative is

2
1

0y
b

∂ =
∂

 

Thus, this is a linear parameter. The partial derivative with respect to the parameter q is
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1
2

[ exp( )]xy x qb
q q

∂ −= ×
∂  

Thus the second derivative will not be zero and this is not a linear parameter. 

Exercise 2

1.a. Virtually any model which has an additive parameter such as 

0 ...y b= +  

Will have the intercept model only as a subset. One less trivial example would be 
the exponential decay. Setting k=0 results in a model with a single parameter (Y0). 
Another is the Michaelis–Menten equation in the following form

axy
b x

=
+  

where setting b = 0 results in a y = a

2.b. 

It is tricky to show strictly that something cannot happen. A simple example could be

exp( )y kx= −  
In this case we do not have the simple intercept model as a subset of the full model. 
When k = 0, y = 1. As k  increases, then y gets closer to zero.  Again this is not an inter-
cept model. Another example would be the one parameter logistic (Eq. 3.10, Table 3).
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Chapter 16: Analysis of 
Non-Gaussian Data

Walter W. Stroup

Answers to Review Questions. Data sets provided as .csv file in 
electronic supplement. 
1. a. Read “plot(block)|variety” as “plot within block after accounting for variety.”

b. Before applying treatments there are 2 plots and hence 1 df in each of 10 blocks. 
Therefore 10 df for plot(block). Accounting for variety removes the df for 
variety(in this case one. Therefore “plot(block)|variety” has 10 1 9− =  df.

2.	 False. Leaving block*variety out of the RANDOM statement will result in 
overdispersion, a common form of poorly specified model. 

3.	 False. Unless you include PLOT in the data set, the term PLOT(BLOCK*VARIETY) 
will be unintelligible to SAS. If you do include it, the algorithm GLIMMIX uses 
to determine denominator DF may not work properly, so you should check the 
listing. In any event, BLOCK*VARIETY uniquely identifies  “plot(block)|variety” 
and avoids unintended consequences.

4. a. Y/N
b. FALSE (!!!!)
c. Make absolutely sure you have both Y and N in the data set for every experimental unit!
5.	 False. If you answered “true” Reread section on notation conventions for mixed models.
6.	 False. 
	 delete IRRIG from CLASS statement
7.	 cumulative logit
8.	 (b)  leaf shape is a “nominal” multinomial variable (i.e. no obvious ranking or categories)
9.	 False. Science should drive statistics, not vice-versa. If science calls for unequal 

spacing, statistics can deal with it. 
10.	No
11.	False. Using RANDOM...RESIDUAL will make this impossible.
12.	True
13.	False
14.	False. (correct answer is Poisson)
15.	True

16.	True

17.	True

18.	False. If the distribution is binomial, The data scale estimate of the LSMEAN is 
the probability.  (or proportion if the distribution is Beta) 

19.	True

20. False. Negative binomial is used for count data, not proportions. Use Beta for 
continuous proportion data. 


