Waight

Fig. 1. Example 1. Scatterplot and Boxplots
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Figure 6.1 Scatter plot of data from Chapter 6, Example 1, eel.dat with

marginal box plots.
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Fig. 6. 3a. Frequency histogram of residuals from model weight ~ length

for eel data from Chapter 6, Example 1.

R scripts pg.- 13



Probability

Student Residuals Histogram, Normal
and Kernal Density Curve for Ex 1

1.0
|
|
i

b
=]
w
o 7 =
. B - .
= f"‘“:
L= P
Al THY
A1 TN
zf
™
o
O
L =]
T T I 1 ] I |
-3 2 -1 ] 1 2 3

Student Residuals

Figure 6.3b. Frequency histogram of standardized (also known as student)
residuals from linear model weight ~ length for the eel data from Chapter 6,
Ex. 1.
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Figure 6.3c. Frequency histogram of Eel weights for Chapter 6, Example 1.
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Figure 6. 4. Several diagnostic plots for regression of weight on length for
eel data from Chapter 6, Example 1. The residuals do not exhibit a pattern

but there are a few outliers.
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Figure 6.5. Additional diagnostic plots for linear regression of weight ~
length for Eel data from Chapter 6, Example 1. These plots include a
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Figure 6.6 Additional influence plots for regression of weight ~ length for
eel data from Chapter 6, Example 1.
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Fig. 3. Chserved and fitted values with
95% confidence intervals for Ex1.
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Figure 6.7. Plot of eel weight on length with confidence and prediction
intervals for Chapter 6, Example 1.
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Figure 6.8. Plot of prediction ellipse for regression of weight on length for

eel data in Chapter 6, Example 1.
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Figure. 6.9. The QQ plot for the regression of weight on length for the eel
data from Chapter 6, Example 1. Some outliers are evident at extremes of

plot.
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Figure 6.10. Diagnostic plots from simple linear regression for fibre

content on day for Chapter 6, Example 3.
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Figure 6.11. Confidence and predication interval plot for the mean of
content regressed on day for the fibre data from Chapter 6, Example 3.
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Figure 6.12. Correlations among variables in the grass dataset where the
plot yields are regressed on counts of windgrass. Several variables were
calculated from the initial count and yield data. Plots of the relationships
among the variables are on the lower diagonal and the pearson correlation
coefficients are above the diagonal. The data are from Chapter 6, Example

4.
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Figure 6.13. Diagnostic plots from linear regression of the plot yield on the
square root of the windgrass counts for the grass data from Chapter 6,
Example 4. The regression model is not an adequate fit to the data.
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Figure 6.14. Diagnostic plots from regression of the log-transformed plot
yield on the windgrass counts for the grass data in Chapter 6, Example 4.
These data illustrate that this model is not an adequate fit to the data.
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Figure 6.15. Plots of the various regressioin models that have been tested
for the relationship between the plot yield and the windgrass counts in
Chapter 6, Example 4. All of the plots illustrate some departure from the
fitted values and the measured values. The plot in the upper left of the
regression of yield on the square root of the windgrass counts has the best

match of data to the fitted values but there are still problems.
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Figure 6.16. Plot of studentized residuals against fitted values for the
nonlinear regression of plot yield on windgrass counts, using the formula:
Yield ~ (a*exp(b*wgrass)), where a= 8000, and b = -0.01) for the grass
data in Chapter 6, Example 4.
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Figure 6.17. Comparison of two nonlinear regressions, both with the same
formula, Yield ~ (a*exp(b*wgrass)). The red line in the fit when a= 8000,
and b =-0.01 and the green line is the fit when a = 7000, b =-0.01, and ¢ =
1200. The second model (green line) seems to be a better fit. These data
are from the grass data in Chapter 6, Example 4.
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Figure 6.18. Plot of fit to data for the nonlinear regression for yield on
windgrass counts where the formula was Yield ~ (a*exp(b*wgrass)) where
a=7000,b=-0.01, and ¢ = 1200. The 95% confidence intervals and
included and illustrate variance heterogeneity as windgrass counts increase.
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Fig. 1. Example §. Scatterplat and Boxplots
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Figure 6.19. Scatter plot of potato weight by size with box plots of the data
for the potato dataset in Chapter 6, Example 6. The data are skewed and
variance heterogeneity is present.
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Figure 6.20. Diagnostic plots for the best regression model for the potato
data in Chapter 6, Example 6. The best model regressed potato weight on
the size3 variable and did not include an intercept. Even though this model
was the best based on all of the models tested, the residuals still show some
inadequacy in the model, specifically for variance heterogeneity.
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Figure 6.21. The histogram for the residuals and the QQ plot for the
untransformed weight data in the potato data set from Chapter 6, Example
6. These plots illustrate the skewed nature of the data.
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Figures 6.22 (left) and 6.23 (right). The plots from box cox transformations
of the size data. Plot 6.22 is the box cox results when weight is regressed
on log(size) while 6.23 is the box cox results when weight is regressed on
size. These data are from Chapter 6, Example 6.
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Figure 6.24. Residuals histograms and box plots for the original weights
and the box cox transformed weights with lambda = 0.34. The
transformation does help to normalize the data and remove some variance
heterogeneity. These data are from the potato dataset in Chapter 6,
Example 6.
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Figure 6.25. The final box cox transformation plot showing that 0.34 has
the highest log likelihood. The transformation is for the weight data in the
potato dataset from Chapter 6, Example 6.
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Fig. 6.26. Diagnostic plots from the regression model for the box cox
transformed potato weight on size. These plots look better but there are still
some problems with the fit of the model. These data are from Chapter 6,

Example 6.
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Fig. 6.27a and b. Residuals plots comparing the regression of weight on size, with
individual weights (a) with the regression of weight on size 3 with no weighting (b) .
The variance heterogeneity is not as great when the weighted analysis is run. These
data are from the potato dataset in Chapter 6, Example 6.
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Fig. 6.28 aand b. The residuals plots for the two models are similar but not
identical. These data are from Chapter 6, Example 6.
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cumulative yield after 10 years against after 4 years
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Fig. 6.29. The observed data and separate regression lines with 95%
confidence and prediction intervals for the apple data in Example 7 of
Chapter 6, which reconstructs Fig. 14 in that chapter.
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Fig. 6.30a
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Fig. 6.30a. The observed data and common regression line with 95%
confidence and prediction intervals for the apple data in Example 7 of

Chapter 6, which reconstructs the upper graph for Approach a in Fig. 15 in
that chapter.
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Fig. 6.30a
cumulative yield after 10 years against after 4 years
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Fig. 6.30a. The observed data and combined analysis regression lines with
95% confidence intervals for the apple data in Example 7 of Chapter 6.
This graph reconstructs the lower left graph for Approach c (equal
variances) in Fig. 15 in that chapter.
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Fig. 6.31
Internally Studentized Residuals
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Fig. 6.31. The internally Studentized residuals plotted against the predicted
values for Approach c (equal variances) for the apple data in Example 7 of
Chapter 6. This graph reconstructs the lower right graph in Fig. 15 in that
chapter, except that there isn't any function to calculate the externally
Studentized (jackknifed) residuals for a gls object in R. However, there is a
function for the internally Studentized residuals, which should not make a
big difference when the number of cases per group is large as it is in this
example (30 per variety).
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Fig. 6.32a
cumulative yield after 10 years against after 4 years
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Fig. 6.32a. The observed data and combined analysis regression lines with
95% confidence intervals for the apple data in Example 7 of Chapter 6.

This graph reconstructs the lower left graph for Approach c (unequal
variances) in Fig. 16 in that chapter.
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Fig. 6.32b
Internally Studentized Residuals
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Fig. 6.32b. The internally Studentized residuals plotted against the
predicted values for Approach ¢ (unequal variances) for the apple data in
Example 7 of Chapter 6. This graph reconstructs the lower right graph for
in Fig. 16 in that chapter, except that the internally instead of the externally
Studentized (jackknifed) residuals are used. See the caption for Fig. 6.31
for an explanation.

R scripts pg. 45




ST perlaes Bed predictien Fmavas i Daiied

Trarad snatyes of resiciunls froms

vyl Wi Piyiuaakin |Ealim | bar daery dita
3
=
u
towved anabpsin o raw dabd B Trsrnd arsslpum =l ulsdnrs snsakisn e
mirmpia Enes regrERson dor Srienp dets nivps fman egrEaion ior Alrernn Sets

Figure 6.33 a, b, c and d. Data from Example 8§ in Chapter 6 are examined.
In 6.33a (upper right), a residuals plot is fit to a simple linear regression of
air temperature on year. Confidence and prediction intervals are included.
In 6.33b, (upper left), the residuals from the model indicate that variance is
increasing with time. In 6.33c (lower left), the temperature data is plotted
against year and the student residuals are plotted against year in 6.33d.
These also show increased variation with time.
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Figure 6.34 a, b, c, and d. Residuals, histograms and boxplots from simple
linear regression of the air temperature on year for the airtemp dataset in
Chapter 6, Example 8. The residuals are in plots 6.34a and 6.34c (left side)
and the studentized residuals are in 6.34b and 6.34d.
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Fig. 6.35a, b, and c. Plots of temperature against year for two
autoregressive models, with prediction intervals, (AR1 (a) and AR4 (b). In
both cases, some of the data points fall outside of the intervals. These plots
match Figures 18 and 17 in Chapter 6. Plot 6.35¢ is the raw data with the
predicted values for the nonlinear regression model marked in red. These
data are from the airtemp dataset in Chapter 6, Example 8.
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Fig. 6.36 a, b, ¢, and d. Moving average plots of air temperature against
year for 1(a), 4(b), 6(c) and 8(d) years. The trend towards more variation
and greater temperatures after 1985 is illustrated. These data are from the
air temp dataset in Chapter 6, Example 8.
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Figure 6.37 a and b. The autocorrelation function (ACF)(a) and the partial
autocorrelation function (PACF) (b) plots for the studentized residuals from
the simple linear model of air temperature on year indicates that it the
autocorrelation alternates sign and the first 4 lags are the largest.
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Fig. 6.38. A plot of the MSE against breakpoint year for the airtemp data.
The minimum MSE occurred when the breakpoint was 1979. These data
are from Chapter 6, Example 8.
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Fig. 6.39
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Figure 6.39. A graph of the two line segments identified in the piecewise
regression of air temperature on year for the airtemp dataset from Chapter 6,
Example 8. The first line (blue) lasts through 1978 and the second (red)
from 1979 to the present. The equation for the blue line is temp = 8.59; and
for the red line, temp = 0.0349(year — 1979) + 8.59.
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Fig. 6.40
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Fig. 6.40. The predicted regression line with confidence and prediction

intervals for a piecewise regression of temperature on year. The breakpoint
was set to 1979 after the iterative search found that breakpoint to minimize
the MSE. These data are from the airtemp dataset in Chapter 6, Example 8.
This graph corresponds to Fig. 19 in that chapter and the model used forces

the initial line segment to be horizontal and the lines to meet at the

breakpoint, which is the same as the authors did for their figure.
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