INTRODUCTION

- Planting the least amount of seed to optimize yield potential, while not compromising yield, increases soybean grower profitability.
- Research has indicated that greater seeding rates are needed in low yielding environments while high yielding environments utilize less seed.
- Due to new technology advancements, site-specific defined seeding rates may enhance return on investment for growers.

OBJECTIVES

I. Determine the response of full-season and double-crop soybean cultivars to seeding rate under different yield environments.
II. Define the relationship of Normal Difference Vegetative Index (NDVI) readings with yield.

MATERIALS AND METHODS

- Research conducted at 20 site-years from 2017-20 across Virginia (Figure 1)
- Seeding Rate (x1000/ha):
 - Full-season: 74, 148, 222, 287, 371, and 445
 - Double-crop: 198, 297, 385, 494, 564, and 593
 - Randomized complete block (RCB) with 4 replications:
 - Split plot in 2019-20 with two varieties/ maturity group (MG)
 - Asgrow Varieties with MG (use varied with year):
 - MG IV: AG47X6, AG48X7, and AG48X9
 - MG V: AG 52X9, AG54X6, AG65X8, and AG58X9
 - Plant stand determined at V2-V3
 - NDVI measurements collected beginning at V5-V7 using a Greenseeker 0.3 m above canopy
 - Yield determined and adjusted to 13% moisture
 - Yield was converted to relative yield for all site years
 - Data subjected to analysis of variance and interaction between site, seeding rate, and maturity group determined
- Relative yield was then regressed on plant population density (PPD) using linear regression techniques across sites within relative maturity (RM)
- 2020 relative yields were regressed on Area Under NDVI Curve (AUNDVIC) with linear regression techniques

\[
AUNDVIC = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{NDVI_{i}}{y} \right] \frac{d}{dt} [-\ln (1-e^{-y})]
\]

where \(n \) is the number of observations, \(y \) is the NDVI reading at time \(t \) (day of year), and \(t \) is the \(t \) rating date

RESULTS

Figure 2. Response of MG4 full-season relative yield to plants per hectare at site years in Virginia, 2017-20.

Figure 3. Response of MG4 double-crop relative yield to plants per hectare at site years in Virginia, 2017-20.

Figure 4. MG4 relative yield response to AUNDVIC at site years in Virginia, 2020.

DISCUSSION

- Yield responded to PPD varied with year and occasionally at site within year.
- MG IV and V showed similar response; only MG IV is displayed due to space.
- Poor stand in 2019 was due to planter malfunction.
- Yield was maximized at 150-200k seed/ha in full-season.
- Yield was maximized at 300-400k seed/ha in double-crop.
- There was a relationship between relative yield and NDVI in 2020 across all sites.
- Additional statistical analysis will be performed, using linear and non-linear techniques.

MOVING FORWARD

- Economic analysis will be performed using variable seed cost and soybean prices.
- Develop yield zones with remotely sensed data to precede future development of variable-rate soybean seeding rate maps.

ACKNOWLEDGEMENTS

This research was funded by the Virginia Soybean Checkoff program administered by the United Soybean Board. Funding for this work was provided in part, by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture. Thank you to our team- Amy Pawlick, Billy Taylor, Ed Seymore, Ronald Daughtny, and Tim Phillips for their contribution to this project.