

Tillage Systems and Soil Conservation for Corn-on-Corn

Tony J. Vyn, assisted by colleagues, graduate students, technicians, and farmers

Ratio of Corn to Soybean Acres (2005)

Appendix Figure 6. Corn Acres Divided by Soybean Acres, 2005

Source: G. Shnitkey, Univ. of Illinois, Farm Economics Facts and Figures (Sept. 15, 2006)

Source: CTIC National Crop Residue Survey

Tillage Choices for Corn after Soybean versus Corn after Corn?

What Kind of Corn-Dominant Rotation?

- Continuous Corn
- Soybean-Corn-Corn
- Soybean-Corn-Corn-Corn
- Soybean-Corn-Corn-Soybean-Corn
- Soybean-Wheat-Corn-Corn-Corn
- Alfalfa-Alfalfa-Alfalfa-Corn-Corn

Corn Yield Means After 5 Years of Soybean (Arlington, WI; 1987 to 2005; Control Treatments)

Source: J. Lauer and T. Stanger, Univ. of Wisconsin

Soybean Yield Means after 5 Years of Corn (Arlington, WI; 1987 to 2005; Control Treatments)

Source: J. Lauer and T. Stanger, Univ. of Wisconsin

Corn Yield Response to Tillage After 5 Years of Soybean (Arlington, WI; 1987 to 2005; Control Treatments)

Source: J. Lauer and T. Stanger, Univ. of Wisconsin

Corn Yield Response to Rotation & Tillage: Southern Iowa Region (2002-2005)

Crawfordsville & Chariton, IA

Source: M. Al Kaisi, Iowa State

Corn Yield Response to Rotation and Tillage: North-Central Iowa Region (2002-2005)

Ames & Kanawha, IA

Source: M. Al Kaisi, Iowa State

Nitrogen Management Issues for Corn after Corn with Conservation Tillage

- Timing: Starter more important (Residues? Planting Date?)
- Rate: More N for any version of corn after corn than typical corn-soybean rotation?

Corn Yield Response to Tillage and Rotation, Silty Clay Loam, West Lafayette, IN, 1975-2006.

Tillage	age Corn/Soybean			. Corn	Yield Gain for Rotation	
	bu/ac	% of plow yield	bu/ac	% of plow yield		
Plow	179.8		172.4		4%	
Chisel	180.1	100%	167.7	97%	7%	
No-till	175.2	97%	148.8	86%	18%	

Average Maximum Soil Temperatures in First 4 Weeks after Planting (1997-2002)

Ridge-till vs. No-till Continuous Corn

Plant Height Variability in Corn after Corn

Grain Yield Response of No-till Continuous Corn vs. Plow + No-till Rotation Corn (1980-1994)

Long-term Tillage Effects on Soil Organic Matter (1975-2003, West Lafayette, IN)

Organic Matter (%)

Source: Gál and Vyn, 2007

Long-term Tillage Effects on Soil Density for Soil Equivalent Mass C Calculations (W. Lafayette, 2003)

Bulk Density (g/cm³)

Source: Gál and Vyn, 2007

Long-term Tillage and Rotation Effects on Total Soil Carbon to a 39.3" depth (1975-2003)

Soil Organic C (tonnes/ha)

Source: Gál & Vyn, 2007

Chisel Plow or Combination Tillage Tools for Corn after Corn?

Corn Yield Response to Tillage and Rotation, Sebewa Loam soil, Wanatah, IN (1997-2006)

Tillage	Corn/S	Sovbean	Con'	t. Corn	Yield Gain for Rotation
	bu/ac	% of chisel, d.,fc. yield	bu/ac	% of chisel, d.,fc. yield	
Fall chisel, disk, field cultivate	195.3		180.7		8%
Fall chisel, field cultivate	193.5	99%	181.9	101%	6%
Fall disk, field cultivate	197.4	101%	178.3	99%	11%
No-till	189.7	97%	167.2	93%	13%

Source: West and Vyn, 2006

No-till Corn Yields – Continuous as % Of Rotation – Loam Soil, Wanatah, IN (1997-2006)

Source: West and Vyn, 2006

Stuart Birrell, Ag and Biological Engineering, Iowa State

Questions about Corn Stover Removal

Feasibility for ethanol production?

Effects on soil properties (physical and chemical)?

Improved situation for No-till Continuous Corn?

Successful Strip Tillage after Soybean and with Reasonable Soil Moisture Conditions

Source: Norm Larson, Elburn Co-op, IL

Surface Residue Cover (%) after Planting Loam Soil, Wanatah, IN, 2001-2004

Increased Corn Demand Drives Rotation and Tillage Choices?

Successful Continuous, Conservation-till Corn Depends on:

- 1. Soil properties (texture, drainage, slope, structure, nutrient status)
- 2. Tillage system selected and how it is adapted (e.g. striptill versus no-till, depth/timing adjustments)
- 3. Associated management (hybrid selection, fertility, etc.)

Successful Continuous, Conservation-till Corn Depends on:

- 4. Compaction patterns / controlled traffic?
- 5. Long-term factors: (e.g. Number of years of corn in succession; manure; corn stalk harvest?)
- 6. Research investment over the next decade!

Acknowledgments

Funding:

USDA-CASMGS Purdue University Mary S. Rice Farm Fund Foundation for Agronomic Research (PPI or IPNI) John Deere & Co.

Equipment:

Case-DMI (Goodfield, IL) John Deere Cropping Systems

Unit

Remlinger (Kalida, OH) Seed: Allen County SWCD Pioneer Hi-Bred, Int. Beck's Hybrids