

Crop	Ps	Bu/wt	Crop Yield	Biofuel	EtOH or oil/bu	EtOH or oil vield/A
Corn	C4	56 lb	150 bu/a	EtOH	2.8 gal	420 gal
**Corn + Stover		56 lb	150 bu/a 3.5 ton	EtOH	2.8 gal 72 gal/ton	420 252 672 gal
Switchgrass	C4	NA	8 ton/a	EtOH	72 gal/ton	576 gal
Soybean	C3	60 lb	40 bu/a	Diesel	1.5 gal	62 gal
Sunflower	C3	27 lb	50 bu/a	Diesel	1.5 gal	77 gal
Canola	C3	50 lb	42 bu/a	Diesel	2.9 gal	120 gal

	bioinass energy crop
	C ₄ photosynthesis
	Long canopy duration
•	Perennial
•	No known pests or diseases
•	Rapid spring growth (out compete weeds)
•	Sterility
•	Partitions nutrients to roots in fall
•	High water use efficiency

		Example	
	Field lo	cated in Clinton	County MI
Soil water hol Blount loam (capacity in to	lding cap).17 cm p p 36 incl	oacity: per cm soil water hes of soil.	holding
36 inches x 0. Average raint 15.46 inches e	17% = 6 fall: 15.4 expected	.12 inches of avai 46 inches expected + 6.12 inches soil	lable soil water d rainfall available = 21.6 total in.
Species	Et g/kg	Yield @ 21.6 " H 20	
Miscanthus	7.8 - 9.5	19 – 23 dton/A	
Miscanthus	3.4 - 4.1	8 – 10 dton/A	
Com	4.0 - 5.5	$7 - 14 \operatorname{uton/A}$	
51 C3 plants	1.6	4 dton/A	NERGAN STATE

Crop Callo	a <mark>sh F</mark> on of	Productio Ethanol F	n C Proc	os du	sts per ced
Crop	\$/A	Field yield	Ethar	ıol	\$/gEtOH
Corn grain	281.53	150 bu/A	2.8 g/	bu	\$0.67
Switchgrass	141.78	8 ton/A	72 g/t	on	\$0.25
Corn + *Stover	351.53	150 bu + 3 ton	2.8 +	72	\$0.55
*Based on removal of \$40.00 acre (USDoE an acre. Does not in Transp	of 3 ton resid =) + increase include lost of Cort C	due at a cost of ed fertilizer at \$30.00 carbon.]	Proc adva cellu may proc adva	duction cost antage of ulose (\$0.42 gal) v exceed vess cost antage of starch.
Copyright Michigan Blane University Board of Tr	utteres				Transforming

Assume: Com above ground biomass yield of 9 ton/A Harvest index: 50% Whole plant C content in com of 43% Root rhizoshpere C deposition = 29% shoot C Need 7560 lb to maintain current SOM level
Total residue root + shoot = 5220 lb root + 9000 lb stover = 14,220 lb/A 14,220 lb/A – 7560 lb/A required = <u>6600 lb/A</u> available for bioenergy harvest.
If corn soybean rotation: 3110 lb/A deficit in plant material 3550 lb/A corn stover available for bioenergy harvest
Consistent with Nelson @ 1.4 ton/A and Purlack & Turhollow 2.5 ton/A.
Current equipment constraints limit maximum harvestable corn stover at 70% (Schechinger and Hettenhaus)6300 lb/A
Copyright Motions Issues of Processor

Tet	Soil C		Soil GHG	Input GHG	Net	Net GWI
	GWP	Res. C	flux	flux	GWP	-R
			g CC), m ⁻² y ⁻¹ -		
Cmpst	-1999	-1358	988	1404	-964	394
Manure	-1006	-2406	2234	19	-1159	124
None	36	-482	1459	10	1022	150
LSD	528	449	220	-	556	618
News	077	4000	4047	470		740
None	-977	-1286	1217	4/6	-570	/16
Rye	-1002	-1545	1904	479	-164	138
LSD	NS	NS	180		NS S	534

Great potential for improved genetics

- Soluble sugars in biomass crops similar to sugar cane.
- Low fiber content similar to brown midribs.
- Oil expression outside the embryo.
- Process enzymes (amylase and hydrolosis enzymes) present in the plant tissue.

• etc.

Conclusions

- Both starch and cellulosic ethanol feedstocks are needed to meet federal renewable fuel goals.
- Corn stover supply is limited by soil erosion and soil carbon factors.
- Cellulosic ethanol processing improvements are continuing.
- Genetic improvement to energy crops is in its infancy.

