Impacts of Increased Corn Frequency in Long-Term Rotations on Yield and Nitrogen Dynamics

Antonio P. Mallarino Iowa State University

N Management in Humid Regions

- Corn acreage in the North Central region is increasing, and the area of corn-corn will also increase.
- N fertilizer costs also are increasing.
- N fertilization of corn is almost always needed to optimize yield and profitability.
- Excessive and inappropriate N fertilization increase the risk of N loss.
- Predicting the N needs of corn is difficult.

Nitrogen in Soils

- N availability highly affected by organicinorganic N transformations.
- Very mobile nutrient (nitrate).
- Rainfall and temperature greatly affect available soil N before and during the growing season.
 - » mineralization/immobilization processes
 - » nitrification (ammonium to nitrate)
 - » nitrate leaching down the profile
 - » N gas loss (ammonia, denitrification)

Crop Rotation Effects on N

- Significant effect of previous crop on
 » symbiotic N fixation by legumes, crop N uptake, C-N ratio of roots and residue.
 » short and long-term effects.
- Organic matter, total N, N mineralization potential, and yield level are poor indices of N availability and N fertilizer needs.
- Soil nitrate testing (preplant or late spring) and in-season crop sensing are not quite ready or accepted yet.

Nitrogen Fertilization Guidelines

- Most N recs in the region include alternative systems or combinations:
 - » Empirical, response-based N ranges
 recognize rotation and manure effects
 for different regions or conditions
 - » Use organic matter and/or potential mineralization
 - » Use soil nitrate testing
 - » Some beginning to use remote sensing

Iowa Long-Term N-Rotation Studies

- Northeast farm (Nashua), Kenyon Ioam, 26 years old. Seven rotations: corn grain, corn silage, soybean, oats, alfalfa.
- Northern farm (Kanawha), Webster clayloam, 60 years old. Seven rotations: continuous corn grain fall N, continuous corn grain spring N, soybean, oats, alfalfa.
- Nitrogen treatments for corn:
 » 0, 80, 160, and 240 lb N/acre
 » granulated urea incorporated into soil

Types of Corn Crops at Nashua

Summarized corn grain yield 1979-2006

Crop Sequence	Corn Crop Studied	Code
continuous corn	continuous corn	С
corn-soybean	corn after soybe an	Cs
corn-corn-soybean	1 st corn after soyb	Ccs
	2 nd corn after soyb	cCs
corn-corn-corn-soyb	1 st corn after soyb	Cccs
	2 nd corn after soyb	cCcs
	3 rd corn after soyb	ccCs
corn-corn-oats-alfalfa	1 st corn after alfalfa	Ccoa
	2 nd corn after alfalfa	cCoa

Types of Corn Crops at Kanawha

Summarize 1985 through 2004 (20 years)

Crop Sequence	Corn Crop Studied	Code
continuous corn	continuous corn	С
corn-corn-corn-oats	1 st corn after oats	Ccco
	2 nd corn after oats	cCco
	3 rd corn after oats	ccCo
corn-soybean	corn after soyb	Cs
corn-soyb-corn-oats	corn after oats	Csco
	corn after soyb	csCo
corn-corn-oats-alf	1 st corn after 1 yr of alf	Ccoa
	2 nd corn after 1 yr of alf	cCoa
corn-oats-alf-alf	corn after 2 yr of alfalfa	Coaa

Rotation and N Effects: Nashua

Rotation and N Effects: Nashua

N Rates for Grain or Total Biomass Continuous Corn (Nashua)

Rotation and N Effects: Kanawha

Frequency of Response to N Rates

Nashua cont. corn

● 0 **●** 80 **●** 160 **●** 240

Frequency of Response to N Rates

Kanawha cont. corn

● 0 **●** 80 **●** 160 **●** 240

Yield Increase Over Time with Nitrogen

		Rate of	Statistical
Corn crop	N rate	Increase	Significance
Corn after corn	0	-87 x	0.01
	80	-11x	ns
	160	65 x	0.01
	240	100x	0.01
Corn after soybean	0	-37 x	0.01
	80	68x	0.01
	160	128 x	0.01
	240	143x	0.01
Corn after alfalfa	0	241x	0.01
	80	181 x	0.01
	160	175x	0.01
	240	155x	0.01

Yield Stability Over Time at Nashua

Corn		Stability	Corn Yield	
crop—	N rate	index	Mean	Difference
С	0	0.4	54	-71
C-soyb	0	0.5	100	-24
C-alť	0	1.3	132	8
С	80	0.9	54	-17
C-sovb	80	1.0	100	17
C-alť	80	1.3	132	27
С	160	1.0	54	6
C-soyb	160	1.2	100	30
C-alť	160	1.4	132	33
С	240	1.2	54	14
C-soyb	240	1.2	100	32
C-alf	240	1.4	132	34

Net Returns To Nitrogen: Nashua

Assumed \$2.20/bu corn and \$0.20/lb N

Net Returns To Nitrogen: Kanawha

N Rate Calculator Corn after Soybean

N Rate Calculator Corn after Corn

Long-Term Effect on Soil Properties

Organic matter:

» highest for corn after alfalfa, intermediate for corn after corn, lowest for corn after soybean.

» increased by N fertilization only with continuous corn

• Potential N mineralization:

» affected only by rotation, highest for corn after alfalfa but similar for others

N Rate, Rotation, and Soil Nitrate

Corn Yield and Soil Nitrate

Fall-Spring Urea for Continuous Corn 20-Year Yield Averages from Kanawha

Fall-Spring Urea for CC: Soil N Trends

Summary: Rotations and N for Corn

Rotation effects other than N over yield of continuous corn:
 » 13% for corn-alfalfa

» 10% for corn-soybean.

 Continuous corn and 2nd or 3rd year corn after soybean have had similar yield levels and N fertilizer requirements.

 N rates to attain maximum yield or returns have not changed consistently over time.

Summary: Rotations and N for Corn

 Near-optimum or higher N rates allowed for expression of yield level increases over time and for better yield stability.

 On average, spring N produced 11% more yield than fall N on average, was up to 36% higher in individual years, but did not differ 50% of the time.

 Soil nitrate in late spring reflected well increased N availability for rotated corn and N loss from fall N application. apmallar@iastate.edu 515-294-6200 http://extension.agron.iastate.edu/faculty/mallarino http://extension.agron.iastate.edu/soilfertility /