Precision Irrigation for Greater Environmental and Economic Sustainability

Mark Reiman
Bayer Crop Science
July 10, 2019
Outline

• What is Precision Irrigation?
• How do we get there?
• Starting simple.
• Getting more complex.
• Putting it all together.
What are we worried about?

• Declining water quantity
#ChennaiWaterScarcity Scenes of the dried up Thiruneermalai, Chembarambakkam, Perumbakkam and Korattur lake in Chennai.

All major reservoirs supplying water to Chennai dry up, read: bit.ly/2WLKzwZ
What are we worried about?

• Declining water quantity
• Declining water quality
What are we worried about?
• Declining water quantity
• Declining water quality

2018 Nebraska Groundwater Quality Monitoring Report

Statewide Number & Median of Nitrate Analyses
1974 - 2017

All 129,828 analyses and median nitrate-nitrogen levels for Nebraska, 1974-2017.
(Source: Quality-Assessed Agrichemical Database for Nebraska Groundwater, 2018)
What are we worried about?

• Declining water quantity
• Declining water quality
• Greater pressure on other uses of water
What are we worried about?

• Declining water quantity
• Declining water quality
• Greater pressure on other uses of water
• Legislation forcing adaptation and changing water rights
What are we worried about?

• Declining water quantity
• Declining water quality
• Greater pressure on other uses of water
• Legislation forcing adaptation and changing water rights
• Customer focus on agricultural production and resource use.
What is Precision Irrigation?

• When you hear the term what do you think about first?
What is Precision Irrigation?

• When you hear the term what do you think about first?

 • You probably first think of technology that allows the irrigation system to apply water and crop amendments as it’s need varies across the field.

 • i.e. Variable Rate Irrigation
What is Precision Irrigation?
What is Precision Irrigation?
What is Precision Irrigation?

• Definition:
 • A system of accurately scheduling and applying irrigation, and amendments to all areas of the field to maximize the desired return to the producer.
 • This is done with the constraints of available resources and equipment.
 • Precision fertigation/chemigation uses the same idea to provide optimum outcomes for the desired factor.
What is Precision Irrigation?

Water Demand

- Crop Type
- Plant Water Use
- Growth Stage
- Crop Type
- Product
- Cover Crop
- Weeds
- Yield Goal
- Weather

Water Use

- Density
- Weather
- Soil Properties
- Topography
- Application Rate

Runoff

- Runoff
- Application Rate
- Residue
- Soil Properties
- Design
- Tillage

Evaporation

- Evaporation
- Residue
- Weather
- Design
- Application Rate

Tillage

- Tillage
- Crop Type
- Plant Water Use
- Growth Stage
- Crop Type
- Product
- Cover Crop
- Weeds
- Yield Goal
- Weather

Soil Properties

- Soil Properties
- Topography
- Application Rate
- Precipitation

Application Rate

- Application Rate
- Residue
- Soil Properties
- Design
- Tillage

Growth Stage

- Growth Stage
- Crop Type
- Plant Water Use
- Growth Stage
- Crop Type
- Product
- Cover Crop
- Weeds
- Yield Goal
- Weather

Yield Goal

- Yield Goal
- Weather
- Plant Water Use
- Growth Stage
- Crop Type
- Product
- Cover Crop
- Weeds
- Weather

Weather

- Weather
- Plant Water Use
- Growth Stage
- Crop Type
- Product
- Cover Crop
- Weeds
- Yield Goal
So how do we get there?

• Be an **Irrigation Advisor**
 • Farmers really need a partner to help.
 • Take time to listen to what the producer wants and needs to get out of their irrigation environment.
 • Focus on what could be done to help manage the tendency to apply more or less water of fertilizer than necessary.
 • Spend as much time as you can working with fields and using available technology to resolve problems.
So how do we get there?

• Research needs to continue to advance
 • Find and evaluate new tools and ideas
 • Study crop systems to understand all production aspects that impact irrigation demand.
 • Ensure feasibility of the end product.
 • Focus on economic and environmental benefits of precision irrigation systems and communicate it to producers and other stakeholders.
Starting Simple

• Have a well designed system to start with.
• Then you need application hardware that is in good working order.
 • Nozzles: Size, Wear, Functionality
 • Pressure regulators
 • Leaks and other identifiable problems.
Starting Simple

It’s possible to get whole spans with the wrong nozzles.
Starting Simple

<table>
<thead>
<tr>
<th>Span and Overhang</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Qty</td>
</tr>
<tr>
<td>8000</td>
<td>1</td>
</tr>
<tr>
<td>8000</td>
<td>1</td>
</tr>
<tr>
<td>8000</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres Total</td>
<td>Acres: Linear</td>
</tr>
<tr>
<td>6.2</td>
<td>EG: 162.3 GPH/Acre</td>
</tr>
<tr>
<td>6.2</td>
<td>0.86 In/Day App Rate</td>
</tr>
<tr>
<td>337.7</td>
<td>0.032 in. App Depth & 100%</td>
</tr>
<tr>
<td>Ft. Machine Length</td>
<td>Ft. End Gun Radius</td>
</tr>
<tr>
<td>100</td>
<td>0.0 GPM End Gun</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Gallons Per Minute</td>
<td>16.23 GPH/Acre</td>
</tr>
<tr>
<td>0.86 In/Day App Rate</td>
<td>0.032 in. App Depth & 100%</td>
</tr>
<tr>
<td>0.0 GPM End Gun</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 PSI Linear Pressure</td>
<td>Calculated Pressure</td>
</tr>
<tr>
<td>0.0 ft. highest elevation</td>
<td>0.0 ft. lowest elevation</td>
</tr>
<tr>
<td>11.2 x 38 Tire</td>
<td>52:1 Wheel Gear Ratio, LDRU Dist 795 Ft.</td>
</tr>
<tr>
<td>0.9 Hrs/Pass @ 100%</td>
<td>(15.56) Ft/Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LRDU Drive Train</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56 RPM Center Drive @ 60 Hz freq.</td>
<td>11.2 x 38 Tire</td>
</tr>
<tr>
<td>52:1 Wheel Gear Ratio, LDRU Dist 795 Ft.</td>
<td>0.9 Hrs/Pass @ 100% (15.56) Ft/Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution:</td>
<td>None</td>
</tr>
<tr>
<td>Dealer:</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprinkler -- Available Outlets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Configuration</td>
<td>Range (ft)</td>
</tr>
<tr>
<td>Valley U-Pipe 6 Galvanized 3/4 M NPT x 3/4 F NPT</td>
<td>Outlets</td>
</tr>
<tr>
<td>Valley Galvanized Drop 6 Below Truss</td>
<td>3.6</td>
</tr>
<tr>
<td>Valley Regulator PSR 6 3/4 F NPT</td>
<td>8.116.2</td>
</tr>
<tr>
<td>Valley LEN Flat 3/4 M NPT</td>
<td>120.124.1</td>
</tr>
</tbody>
</table>
Starting Simple

Pressure Loss

<table>
<thead>
<tr>
<th>Length Ft</th>
<th>I.D. In</th>
<th>Finish</th>
<th>C-Factor</th>
<th>PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>337.7</td>
<td>6.42</td>
<td>Galvanized</td>
<td>170</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total = 0.5</td>
</tr>
</tbody>
</table>

Span Flow

<table>
<thead>
<tr>
<th>Number</th>
<th>Length</th>
<th>Acres</th>
<th>Rgd</th>
<th>Act</th>
<th>Rgd</th>
<th>Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>152.3</td>
<td>2.8</td>
<td>44.8</td>
<td>44.8</td>
<td>16.11</td>
<td>16.11</td>
</tr>
<tr>
<td>2</td>
<td>159.8</td>
<td>2.9</td>
<td>47.0</td>
<td>47.0</td>
<td>16.12</td>
<td>16.13</td>
</tr>
<tr>
<td>O/H</td>
<td>18.1</td>
<td>0.3</td>
<td>5.6</td>
<td>5.6</td>
<td>17.02</td>
<td>16.91</td>
</tr>
<tr>
<td>Totals</td>
<td>6</td>
<td>97.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced Options

- Drain Sprinkler = Senninger Directional
- Last Sprinkler Coverage = 1.0 ft
- Sprinkler Coverage Length = 338.7 ft
- Use Last Coupler = YES
- Minimum Mainline Pressure = 6.0 PSI

Shipping Options

- Do not ship Hardware
- Do not ship Drain Long Gun
- Do not ship Endgun & Hardware
- Do not ship EndGun Valve / Nozzle Valve Hardware
- Do not ship Boosterpump Hardware
Starting Simple

<table>
<thead>
<tr>
<th>No</th>
<th>Opl No</th>
<th>Dist From Pivot</th>
<th>Dist Last Spk</th>
<th>Nozzle Size</th>
<th>Color</th>
<th>Sprk Model</th>
<th>Wear Pad</th>
<th>Drop Length</th>
<th>Regulator</th>
<th>Line PSI</th>
<th>Spk PSI</th>
<th>Rgd</th>
<th>Act CPM</th>
<th>Act GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
<td>1</td>
<td>21</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>60</td>
<td>PSR 6A</td>
<td>9.9</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11.2</td>
<td>2</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>66</td>
<td>PSR 6A</td>
<td>9.7</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.2</td>
<td>3</td>
<td>21</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>72</td>
<td>PSR 6A</td>
<td>9.5</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>33.7</td>
<td>4</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>72</td>
<td>PSR 6A</td>
<td>9.4</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>41.2</td>
<td>5</td>
<td>21</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>78</td>
<td>PSR 6A</td>
<td>9.3</td>
<td>7.3</td>
<td>2.0</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>55.0</td>
<td>7</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>78</td>
<td>PSR 6A</td>
<td>9.2</td>
<td>7.3</td>
<td>2.0</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>57.8</td>
<td>8</td>
<td>21</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.1</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>62.5</td>
<td>9</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.1</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>70.0</td>
<td>10</td>
<td>21</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>72.8</td>
<td>11</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>75.0</td>
<td>12</td>
<td>21</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>77.8</td>
<td>13</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>80.0</td>
<td>14</td>
<td>22</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>82.5</td>
<td>15</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>85.0</td>
<td>16</td>
<td>22</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>87.8</td>
<td>17</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>90.1</td>
<td>18</td>
<td>22</td>
<td>Brown</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>92.4</td>
<td>19</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>94.9</td>
<td>20</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>97.4</td>
<td>21</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>99.9</td>
<td>22</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>102.4</td>
<td>23</td>
<td>22</td>
<td>Red</td>
<td>LEN</td>
<td>Black 33 Grv</td>
<td>84</td>
<td>PSR 6A</td>
<td>9.0</td>
<td>7.2</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Getting more complex

- The next step is accurate irrigation scheduling to match crop needs.
- This is a growing field, but one that has advanced slowly relative to other technologies.
 - It is easier to demonstrate the benefits of other precision technologies.
 - Other technologies require modifying a few machines rather than each field.
 - In general they are well developed and known to make production simpler.
Getting more complex

Adoption of guidance systems (by crop)

Percent of crop planted acres

- Corn
- Cotton
- Peanuts
- Rice
- Soybeans
- Spring wheat

Source: USDA. Economic Research Service estimates using data from the Agricultural Resource Management Survey (ARMS) Phase II.
Getting more complex

U.S. Irrigation: Deciding When to Irrigate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition of Crop</td>
<td>74</td>
<td>80</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>Feel of Soil</td>
<td>41</td>
<td>35</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>Soil Moisture Sensing</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Commercial or Government Scheduling Service</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>When Neighbors Begin to Irrigate</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
Getting more complex

Nebraska Irrigation: Deciding When to Irrigate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition of Crop</td>
<td>85</td>
<td>87</td>
<td>89</td>
<td>86</td>
</tr>
<tr>
<td>Feel of Soil</td>
<td>51</td>
<td>49</td>
<td>60</td>
<td>44</td>
</tr>
<tr>
<td>Soil Moisture Sensing</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Commercial or Government Scheduling</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Service</td>
<td>17</td>
<td>19</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Reports on daily crop ET</td>
<td>0</td>
<td>11</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>When Neighbors Begin to Irrigate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Getting more complex

- Tools that improve scheduling accuracy for the crop and soil conditions present in the field.
 - Soil moisture monitoring equipment
 - Turgor pressure monitoring
 - Public weather ET information
 - Advanced weather station feedback and ET models
 - Imagery determined field ET
 - Hand feel method
Getting more complex

• To move towards more accurate scheduling we need be able to showcase the benefits.
 • Economic advantages have to be proven.
 • Producers don’t want more log-ins.
 • Environmental gains need to be quantified for support.

• Overall, savings of 2-4 inches of water without negative yield responses are being shown, and there is opportunity for more.
Putting all the pieces together

• Many of the issues lowering sustainability are solved with proper design, maintenance, and scheduling tools.

• To build on the field as a system you can continue to aggregate more information to refine irrigation models.
Putting all the pieces together
Putting all the pieces together

- Another example of aggregate information is better crop response information.
Putting all the pieces together

- Another example of aggregate information is better crop response information.

Corn yield at all irrigation levels both the DroughtGard Hybrids and Aquamax products combined.
Putting all the pieces together

• With these spatial layers you can then start to build out VRI irrigation maps and use equipment capabilities to apply water efficiently.

• The same is true of the crop inputs. With the right information you can basically turn your pivot into a VRI fertilizer applicator.

• With the water savings from improvements and potential Nitrogen savings you are providing the better outcomes you were looking for.
Putting all the pieces together

• VRI is more about better water management and potential gains in over and under watered areas of the field with conventional irrigation.

• Lo et al., 2016 estimated that across Nebraska only 2% of fields would see pumping reductions of 2 inches or more and 13% would see reductions of 1 inch or more.

• Other environmental benefits play a role too. If you are applying the correct amount of irrigation you also leaching less N.
Summary

• Precision irrigation really starts at the simplest level.
• It can continue to be improved for economic and sustainability by aggregating more information.
• Remember there is a solution for the amount of water and crop inputs that maximize your cropping system.
• **Work towards finding it!**
Thank You!