

Managing Nutrients After the Drought

September 26, 2012

Key Topics for Today's Discussion:

- Assessment of Current Nutrient Situation
 - Crop yields vs. removal, movement of nutrients, nutrient forms
- Nitrogen-Related Topics
 - Crop uptake vs. carryover nitrogen
 - Considerations for whole crop harvest
 - Fate of carryover nitrogen through the next crop
 - Nitrogen testing options
 - Residual nitrogen following soybeans
- Lime, Phosphorus, and Potassium Considerations
 - Crop removal considerations
 - Nutrient cycling and soil test differences in drought conditions
- Managing Cover Crops

If You Are Having Audio Trouble

Optional Telephone Connection United States: (415) 655-0051 Access Code: 789-719-757 Audio PIN: Shown after joining the Webinar Webinar ID: 593-104-986

For best visual and sound quality, turn off other computer applications

We appreciate the support of the sponsor for today's webinar:

Today's slides, links to additional resources at: https://www.agronomy.org/education/ managing-nutrients-drought-resources

Webinar Resources

Managing Through the Drought Resources Managing Nutrients After the Drought Resources

Today's Panel Members

Jim Camberato, PhD Purdue University

John Grove, PhD University of Kentucky

Antonio Mallarino, PhD Iowa State University

Scott Murrell, PhD

International Plant Nutrition Institute

Mike Plumer, MS

University of Illinois Extension (retired)

Coordinator, Illinois Council on Best Management Practices

hD ger my ue ity

Bruce Erickson, PhD

Agronomic Education Manager American Society of Agronomy Adjunct Asst. Professor, Purdue University

Managing Nutrients After the Drought

We Welcome Your Questions and Comments:

- Type in the question queue
- Please be as brief as possible
- Indicate which panel member to ask if you have a preference
- Indicate your location, if relevant to question

Overview of the 2012 Drought

T. Scott Murrell U.S. Northcentral Director

> IPNI Better Crops, Better Environment ...through Science

Local conditions may vary. See accompanying text summary for forecast statements.

http://droughtmonitor.unl.edu/

Released Thursday, September 20, 2012 Author: David Simeral, Western Regional Climate Center

Percent of U.S. area (contiguous 48 states) in various drought intensity classifications

		Drought intensity classification						
Period	Date	None	Dry to moderate	Severe to exceptional				
One year ago	9/13/2011	55.36	20.54	24.10				
3 months ago	6/19/2012	31.22	44.51	24.27				
Current	9/18/2012	21.85	37.08	41.07				

National Drought Mitigation Center, USDA, NOAA. 2012. U.S. Drought Monitor. Available at http://droughtmonitor.unl.edu

Impacts of 2012 drought on agriculture

Crop	Average U.S. yield to date	Comparison to 2011 average
	(bu/a	acre)
Corn	122.8	-24.4
Soybean	35.3	-6.2

Other impacts:

- Increased hay thefts
- Increased selling of cattle
- Many counties designated as Primary Natural Disaster Areas
- Increased competition for water use

USDA-NASS. 2012. Crop Production. Available at http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1046 National Drought Mitigation Center. 2012. Drought impact reporter. Available at http://droughtreporter.unl.edu; National Drought Mitigation Center, USDA, NOAA. 2012. U.S. Drought Monitor. Available at http://droughtmonitor.unl.edu.

Reduced yield results in reduced nutrient removal for a given harvested portion

		Grair	Yield and	
Crop	State	Normal year (1987)	Drought year (1988)	nutrient removal reduction
		(bu/a	acre)	(%)
Corn	Illinois	132	73	45
	Indiana	135	83	39
	lowa	130	84	35
Soybean	Illinois	38.0	27.0	29.0
	Indiana	40.0	27.5	31.3
	Iowa	43.5	31.0	28.7

A change in harvested portion changes nutrient removal

	Harvested		Nutri	ient remo	val**
Scenario	portion	Yield	Ν	P_2O_5	K ₂ O
				(lb/acre)	
Planned	Corn grain	150 bu/acre	100	53	38
Actual	Corn silage with barren ears*	10.8 tons/acre	70	18	67
Difference			-30	-35	+29

*Assumes corn stover corresponding to 150 bu/acre grain crop, no grain formed, a harvest index of 0.5, and a moisture content of 67% (wet basis).

**Based on nutrient removal rates of published in:

Phillips, S. and K. Majumdar. 2012. Scientific principles supporting – right rate. p. 4-1 to 4-11. In Bruulsema, T., P.E. Fixen, and G.D. Sulewski (eds.) 4R plant nutrition: A manual for improving the management of plant nutrition. North American version. International Plant Nutrition Institute, Norcross, Georgia. Nitrogen, P_2O_5 , and K_2O removal rates for corn silage were 67, 55, and 85% of published values to account for lack of grain.

Managing Soil Nitrogen After The Drought

John H. Grove University of Kentucky

KAg Department of Plant and Soil Sciences

Adapted from Murrell, 2012

How Large Is The Problem?

≻Karlen et al. (1988) reported that a corn crop yielding about 310 bu/A took up about 345 lb N/A.

>So, a good 225 bu/A corn crop will need at least 250 lb N/A from soil and fertilizer.

➢Producer provides 180 lb N/A, assuming the soil (organic matter) provides 70 lb N/A.

> Understanding the problem:

Worst case - all vegetative material returned (destroyed the crop without grain/silage harvest).

How Much?

If corn stopped growing around R1-R2, then about 2/3 of N uptake has occurred. 20

Assuming total uptake = 250 lb N/A, that means 167 lb/A is in the standing crop with 83 lb/A remaining in the soil in the fall.

Iowa State Extension Service

Fall soil N could be less (early N losses); could be more (more organic N mineralization).

Where Is That Carryover N?

>Worst Case:

Stover/root N (167 lb N/A) lies on/near surface.

>Unused soil N (83 lb N/A) left in soil, near surface.

Not Worst Case (some grain harvested):
Grain removes 0.8 to 0.9 lb N/bushel (reduce carryover N pools, both soil and stover, equally).

>In What Form Is That Carryover N?

- > Carryover stover/root N found as 'labile' organic N and nitrate-N.
- > Carryover soil N largely nitrate-N.

What 'Happens' To Carryover N?

Stover/root 'labile' organic N
Microbial immobilization (good)
Microbial mineralization (not good)

>Outcome depends upon C:N ratio, available C and O_2 , environmental conditions (T, H_2O).

- >Stover/root nitrate N
- ≻Soil nitrate N

>Immobilization (good)

- >Denitrification (not great)
- >Leaching (not good)

What Do You Mean 'Not Good'?

November to April nitrate-N in leachate water collected below corn rooting depth, as related to the amount of fall soil nitrate -N. N rate and manure treatments. No-tillage/no cover crop.

Department of Plant and Soil Sciences

Residual nitrate in the fall soil profile tends to be higher after a droughty year

and Soil Sciences

Nitrate leaching is related to the amount of early season rainfall – and also to fertilizer N management

Randall et al. 2003

Adapted from Murrell, 2012

B Department of Plant and Soil Sciences

Dealing With Carryover N

>Next spring - Dr. Camberato

>This fall

➢Principles and options:

 Biologically immobilize as much labile or nitrate N as possible - reconnect C and N
Minimize/slow oxidation of labile C
Use cover crops (biological immobilization)

>More on cover crops - Mr. Plumer

Midwest Cover Crop Council http://www.mccc.msu.edu

		\$	A		Ma	5	-	é.,	-	P	Au	y	Se		9	z	No		2	-	Ja		1
Nitrogen Scavenger	15	Per 1	-	y 1	¥ 15	-	n 15	1	15	1	g 15	- de	-	et 1	15	ov 1	15		9 01	an-1	15	5 1	15
Nonlegumes							-																
Barley, Spring (C)3																							
Barley, Winter (E)3																							
Buckwheat (C)3												-				-					1		
Chicory (part of a mix) (E)2						1.							1										
Millet, Japanese (C)3												-							-				
Millet, Pearl (C)3										-													
Oats (C)3	1																						
Rye, Winter Cereal (C)4						-																	
Ryegrass, Annual (C)3																							
Sorghum-sudangrass (C)4																							
Sudangrass (C)4																							
Sunflower (part of a mix) (E)3																							
Triticale, Winter (C)3									-														
Wheat, Spring (C)3																							
Wheat, Winter (C)3																							
Brassicas																							
Radish, Oilseed (E)4									1														
Rapeseed/Canola (C)3																							
Turnip, Forage type (C)3																					1		

Adapted from Murrell, 2012

Dealing With Carryover N

>Next spring - Dr. Camberato

>This fall

➢Principles and options:

 Biologically immobilize as much labile or nitrate N as possible - reconnect C and N
Minimize/slow oxidation of labile C
Use cover crops (biological immobilization)
Minimize tillage (avoid accelerated oxidation)
Only the wettest, untiled, soils/fields - nitrate N more likely lost to denitrification than to leaching

Managing Nutrients After the Drought

We Welcome Your Questions and Comments:

- Type in the question queue
- Please be as brief as possible
- Indicate which panel member to ask if you have a preference
- Indicate your location, if relevant to question

Precipitation Across the Corn Belt

Taking Stock of Nitrate Carryover

- Fall soil sampling Western Corn Belt
- PrePlantNitrateTest (PPNT) Central and Northern Corn Belt
- PreSidedressNitrateTest (PSNT) Eastern Corn Belt

Western Corn Belt

Ex. - Nebraska

- 4' soil sample in fall
- About 50% of the NO₃-N in a 4' depth subtracted from the yield goal based N recommendation (if only 0-2' sampled then 2-4' estimated)

Table IV. An example calculation of mean depthweighted soil nitrate-nitrogen concentration across several soil depths.

Soil layer, inches	Thickness, inches	Nitrate- N, ppm	Calculations for soil layer
0-8	8	15	8 x 15 =120
8-24	16	10	16 x 10 =160
24-48	24	3	24 x 3 = 72
Total	48		352
Weighted average ppm			352/48 = 7.3 ppm

be assumed to be 3.6 M lb soil/ac-ft.

8 x NO₃-N ppm = lb/acre subtracted from rec.

Fertilizer Suggestions for Corn. Univ. of Nebraska, EC117, Shapiro et al., 2010.

Central and Northern Corn Belt

Ex. – Wisconsin

- 2' soil sample in 1' increments as soon as frost is out of ground
- NO₃-N greater than 50 lb/acre is subtracted from recommendation

Wisconsin's Preplant Soil Nitrate Test, A3512, Bundy et al., 1995.

Eastern Corn Belt

Ex. - Indiana

- 1' soil sample after corn is planted (V4-V6, 6-12 inches tall)
- NO3-N determined is an index of the N to be released from organic N sources – soil OM, manure, legumes

Soil NO ₃ -N	Subtraction from standard N rec.					
ppm	lb/acre					
0-10	No subtraction					
11-15	-25					
16-20	-45					
21-25	-90					
>25	No N rec.					

The Pre-Sidedress Nitrate Test for Improving N Management in Corn, Purdue Univ. AY-314-W, Brouder and Mengel, 2000.

Soil Nitrate Testing

- Significant leftover NO₃-N may be available due to poor corn yield this past season
 - Routine sampling in West
 - Be prepared elsewhere to obtain soil samples if winter is normal to dry
 - Follow recommendations for sampling and sample interpretation in your states
- Keep samples cold for overnight delivery, spread thin on clean paper or plastic to air dry, or freeze

Will soybean N credits be affected for next year?

T. Scott Murrell U.S. Northcentral Director

> IPNI Better Crops, Better Environment ...through Science

PNI

INSTITUTE

INTERNATIONAL PLANT NUTRITION

Crop effects on organic nitrogen content of soils

Soil	Change in organic n May te	Change in organic nitrogen content from May to Sept.					
	Corn 1997	Soybean 1998					
	(0,	%)					
Zenor	-9.17	27.1					
Clarion 1	-9.86	22.4					
Clarion 2	-16.5	17.5					
Webster 1	-26.0	2.6					
Webster 2	-10.3	17.0					
Webster 3	-12.4	15.1					
Webster 4	-13.9	10.3					
Okoboji	-1.3	0.24					

Martens, D.A., D.B. Jaynes, T.S. Colvin, T.C. Kaspar, and D.L. Karlen. 2006. Agron. J. 70:382-392.

Comparing C/N ratios of corn residue to soybean residue

Crop	Fertility treatment	C/N ratio
	(lb N/acre)	
Corn	100	90/1
	200	57/1
	300	45/1
Soybean	0	41/1

Green, C.J. and A.M. Blackmer. 1995. Soil Sci. Soc. Am. J. 59:1065-1070.

Contribution of soybean nodules to the N response of the following maize crop

● After nodulating soybeans □ After non-nodulating soybeans ▲ After corn

Contribution of soybean nodules to the N response of the following maize crop

● After nodulating soybeans □ After non-nodulating soybeans ▲ After corn

Bergerou et al. 2004. Plant Soil 262:383-394.

Taking the soybean N credit next year

- The N "credit" likely arises from:
 - Increase in a readily mineralizable organic N pool
 - Less immobilization of N due to lower C/N ratios of soybean residue compared to corn residue
- 2012 drought year:
 - For corn, yields were lower than planned for
 - N rates ended up being beyond those needed to maximize the low yields
 - C/N ratios are likely lower in corn residue this year
 - Corn residue will look more like soybean residue, so baseline for comparison shifts, making the soybean credit appear lower
 - For soybean, poorer nodulation could result in slightly lower N credits
 - Overall, N credit will likely be less, but overall N rates needed next year could also be less, due to higher residual nitrate and lower C/N ratios of corn stover

Managing Nutrients After the Drought

We Welcome Your Questions and Comments:

- Type in the question queue
- Please be as brief as possible
- Indicate which panel member to ask if you have a preference
- Indicate your location, if relevant to question

Major P and K issues due to drought

- Crop issues
 - Less than normal uptake and yield
 - Less removal with harvest
 - Very large yield and removal variability within and across fields

Soil issues

- Dry weather effect on recycling to soil
- Dry soil effects on soil-test results

Yield level and P Removal

Mallarino, Oltmans, et al., 2011

Yield level and K Removal

Mallarino, Oltmans, et al., 2011

Use suggested concentrations and yield estimates

Crop	Unit of Yield	P ₂ O ₅	K ₂ O
Corn	bu	0.375	0.30
Corn silage	bu grain equiv.	0.55	1.25
Corn silage	ton, 65% H ₂ O	3.50	8.0
Soybean	bu	0.80	1.5
Oat and straw	bu	0.40	1.0
Oat straw	ton	5.0	33.0
Wheat	bu	0.60	0.30
Alfalfa	ton	12.5	40.0
Red clover	ton	12.0	35.0

Adapted from PM 1688 publ.

Use yield monitors to estimate yield and removal variation within fields

Nutrient removal of drought-damaged corn harvested for silage (assuming no or little grain produced)

	Percent of normal full removal					
Corn growth stage	P ₂ O ₅	K ₂ O				
R1 (silking)	50	75				
R2 (blister)	55	85				
R3 (milk)	55	85				
R4 (dough)	55	85				

Calculations from Iowa State University publ. PMR 1009, Corn growth and development

Summary:

- Uncertain drought effects on crop P and K concentrations, and expected high variation
- Yield level drives amounts of P and K removed
- Use locally suggested average nutrient concentrations
- Measure yield level the best you can, use of yield monitors to estimate within-field yield and removal variation

K recycling and rainfall

Measurements from physiological maturity until early spring of the following year

K recycling and soil-test K change from fall to spring

Exchangeable/Non-Exchangeable K Reactions

Uncertain but possible effect of drought due to limited equilibrium between pools:

- Likely less exchangeable K increase after harvest crops
- More K remains exchangeable when fertilizing dry soil

Effect of pre-plant K fertilization on soil-test K and non-exchangeable K after corn harvest

Summary

- Less P and K recycling and slower equilibrium between soil P and K pools equilibrium
- Unclear effects on P: Values may be perhaps 0 to 15% lower, but I would use the normal interpretations
- Much lower soil-test K results
 - Less K recycled from standing plant and residue
 - Slower replenishment of exchangeable K
- Late fall (after some rain) or spring soil sampling will provide more reliable results

Fall Drought and Soil pH

- Issue: Less leaching of soluble salts from topsoil
- pH values may be 0.1 to 0.3 units lower
 Example: 5.7 to 5.9 instead of 6.0
- Little or no effects on Buffer pH used to calculate amounts of lime to apply
- A couple of inches of rain will be enough to restore normal conditions and pH test results
- If little rain continues, little movement of lime into soil in no-till or pastures

Cover Crop Considerations

Mike Plumer

University of Illinois Extension (retired)

Coordinator, Illinois Council on Best Management Practices

Illinois KIC -Soil nitrate study 2012

- 10-25ppm in top 12" of soil
 - Max found 75ppm side dress track with UAN
 - Very little found below 12"
- Cover crops only way to stop nitrogen loss

Protecting ground water by holding left over nitrogen till spring 63

Nitrogen Uptake

- Continuous no-till
- Corn after Corn
- 200#N/a = 215 bu/A
- 3642 #/A. annual ryegrass Jan. 6
- 84 #/a of Nitrogen from ryegrass water leachable
- Leached out of ryegrass with 2" of water applied

Average annual flow-weighted nitrate-N concentration of drainage water for 2002-2005

U of III.

Recovering the nutrients

- Killing plants in vegetative stage of growth will recover nitrogen quickly:
 - Lack of lignin
 - Fragile cellulose
 - Good carbon:nitrogen ratio
 - Cereal rye 20:1
 - Ryegrass 15:1
 - Legumes 10:1
 - No-till system grass leaches out nitrogen with rainfall and surface decomposition
 - Tillage systems require microbial breakdown of plant which is quick at this stage of growth

Managing Nutrients After the Drought

We Welcome Your Questions and Comments:

- Type in the question queue
- Please be as brief as possible
- Indicate which panel member to ask if you have a preference
- Indicate your location, if relevant to question

About the American Society of Agronomy

- Science-based, dedicated to the development of agriculture in harmony with environmental and human values
- Serves members through publications, recognition and awards, placement service, certification programs, education
- Works closely with the Crop Science Society of America and the Soil Science Society of America
- Annual Meetings October 21-24, Cincinnati, OH
- Watch for announcement of 4R Nutrient Management Online Class—Nov, Dec, Jan

Managing Nutrients After the Drought

Today's slides, links to additional resources at: https://www.agronomy.org/education/ managing-nutrients-drought-resources